Holomorphic families of immersions and higher analytic torsion forms

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bismut, Jean-Michel 1948- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: [Paris] Soc. Math. de France 1997
Schriftenreihe:Astérisque 244
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV011994249
003 DE-604
005 19990127
007 t|
008 980609s1997 xx d||| |||| 00||| eng d
035 |a (OCoLC)245713784 
035 |a (DE-599)BVBBV011994249 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-20  |a DE-355  |a DE-29T  |a DE-824  |a DE-384  |a DE-12  |a DE-19  |a DE-91G  |a DE-11 
084 |a SI 832  |0 (DE-625)143196:  |2 rvk 
100 1 |a Bismut, Jean-Michel  |d 1948-  |e Verfasser  |0 (DE-588)141840056  |4 aut 
245 1 0 |a Holomorphic families of immersions and higher analytic torsion forms  |c Jean-Michel Bismut 
264 1 |a [Paris]  |b Soc. Math. de France  |c 1997 
300 |a VII, 275 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Astérisque  |v 244 
650 0 7 |a Immersion  |g Differentialgeometrie  |0 (DE-588)4191446-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Torsion  |0 (DE-588)4125469-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Holomorphie  |0 (DE-588)4160484-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |D s 
689 0 1 |a Immersion  |g Differentialgeometrie  |0 (DE-588)4191446-6  |D s 
689 0 2 |a Torsion  |0 (DE-588)4125469-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Holomorphie  |0 (DE-588)4160484-2  |D s 
689 1 |5 DE-604 
830 0 |a Astérisque  |v 244  |w (DE-604)BV002579439  |9 244 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008117227 

Datensatz im Suchindex

DE-19_call_number 1601/SI 832-244
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 001z 2001 A 998
DE-BY-TUM_katkey 1561162
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020379926
DE-BY-UBM_katkey 3261851
DE-BY-UBM_media_number 41602151390015
DE-BY-UBR_call_number 80/SI 832
DE-BY-UBR_katkey 2361153
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069022871873
_version_ 1823053262240088064
adam_text 244 ASTERISQUE 1997 HOLOMORPHIC FAMILIES OF IMMERSIONS AND HIGHER ANALYTIC TORSION FORMS JEAN-MICHEL BISMUT SOCIETE MATHEMATIQUE DE FRANCE PUBLIE AVEC LE CONCOURS DU CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CONTENTS INTRODUCTION 1 1 FAMILIES OF IMMERSIONS AND CONNECTIONS ON THE RELATIVE TANGENT BUNDLE 13 1.1 A CANONICAL CONNECTION ON THE RELATIVE TANGENT BUNDLE OF A FIBRATION 13 1.2 AN IDENTITY ON THE CONNECTION ON THE RELATIVE TANGENT BUNDLE . . . . 15 1.3 FAMILIES OF IMMERSIONS AND THE CORRESPONDING CONNECTIONS ON THE RELATIVE TANGENT BUNDLES 16 2 KAHLER FIBRATIONS, HIGHER ANALYTIC TORSION FORMS AND ANOMALY FORMU- LAS 23 2.1 KAHLER FIBRATIONS 23 2.2 COMPLEX HERMITIAN VECTOR SPACES AND CLIFFORD ALGEBRAS 26 2.3 THE LEVI-CIVITA SUPERCONNECTION OF THE FIBRATION . . . . 27 2.4 SUPERCONNECTION FORMS AND TRANSGRESSION FORMULAS 29 2.5 THE ASYMPTOTICS OF THE SUPERCONNECTION FORMS AS U ** 0 30 2.6 THE ASYMPTOTICS OF THE SUPERCONNECTION FORMS ASU- +OO 31 2.7 HIGHER ANALYTIC TORSION FORMS 32 2.8 ANOMALY FORMULAS FOR THE ANALYTIC TORSION FORMS 33 3 KAHLER FIBRATIONS, RESOLUTIONS, AND BOTT-CHERN CURRENTS 35 3.1 A FAMILY OF DOUBLE COMPLEXES 35 3.2 THE ANALYTIC TORSION FORMS OF THE DOUBLE COMPLEX 37 3.3 ASSUMPTIONS ON THE METRICS ON , R 40 3.4 A BOTT-CHERN CURRENT 41 4 AN IDENTITY ON TWO PARAMETERS DIFFERENTIAL FORMS 43 4.1 A BASIC IDENTITY OF DIFFERENTIAL FORMS 43 4.2 A CHANGE OF COORDINATES 46 SOCIETE MATHEMATIQUE DE FRANCE IV CONTENTS 4.3 A CONTOUR INTEGRAL 47 4.4 SOME ELEMENTARY IDENTITIES 48 5 THE ANALYTIC TORSION FORMS OF A SHORT EXACT SEQUENCE 51 5.1 SHORT EXACT SEQUENCES ARID SUPERCONNECTIONS 51 5.2 THE CONJUGATE SUPERCONNECTIONS ^U AND 9) U 54 5.3 GENERALIZED SUPERTRACES 55 5.4 TRANSGRESSION FORMULAS AND CONVERGENCE OF GENERALIZED SUPERTRACES . 56 5.5 GENERALIZED ANALYTIC TORSION FORMS 56 5.6 EVALUATION OF THE GENERALIZED ANALYTIC TORSION FORMS 57 5.7 EQUIVARIANT GENERALIZED ANALYTIC TORSION FORMS 58 5.8 SOME IDENTITIES ON GENERALIZED SUPERTRACES 60 5.9 A CONJUGATION FORMULA . .- 67 6 A PROOF OF THEOREM 0.1 , 69 6.1 THE MAIN THEOREM 70 6.2 A RESCALED METRIC ON E . . 71 6.3 THE LEFT-HAND SIDE OF (4.26): SEVEN INTERMEDIATE RESULTS 72 6.4 THE ASYMPTOTICS OF THE L S 74 THE TERM 7? 75 THE TERM 1$ 7 7 THE TERM 1$ 79 THE TERM 1% 80 6.5 THE DIVERGENCES OF THE LEFT-HAND SIDE OF (4.26) . . . 83 6.6 THE-RIGHT-HAND SIDE OF (4.26): FIVE INTERMEDIATE RESULTS 84 6.7 THE ASYMPTOTICS OF THE RIGHT-HAND SIDE OF (4.26) 88 6.8 MATCHING THE DIVERGENCES 105 6.9 AN IDENTITY ON BOTT-CHERN CLASSES AND BOTT-CHERN CURRENTS 107 6.10 PROOF OF THEOREM 6.2 108 7 A NEW HORIZONTAL BUNDLE ON V AND THE CONJUGATE SUPERCONNECTION A UYT 109 7.1 A FORMULA FOR D X AND D Y 110 7.2 THE CANONICAL EXACT SEQUENCE ON W 110 7.3 A COORDINATE SYSTEM ON V NEAR W ILL 7.4 A SPLITTING OF NEAR W ILL 7.5 A COHOMOLOGICAL OBSTRUCTION TO THE EQUALITY T H V W =T H W . . . . 113 7.6 AN EXTENSION OF T H W TOV 114 ASTERISQUE CONTENTS 7.7 THE CONJUGATE SUPERCONNECTION A U: T 116 7.8 A LICHNEROWICZ FORMULA FOR A T AND A T 118 8 A TAYLOR EXPANSION OF THE SUPERCONNECTION A ^ NEAR W 121 8.1 A TRIVIALIZATION OF A(T* (0 1) ^) § ALONG GEODESIES NORMAL TO Y ... 121 8.2 A TAYLOR EXPANSION FOR AI T X NEAR W , 122 8.3 THE PROJECTION OF THE SUPERCONNECTION 93 128 9 THE ASYMPTOTICS OF SUPERTRACES INVOLVING THE OPERATOR EXP(-B^ T ) FOR LARGE VALUES OF U, T 131 9.1 THE SPECTRUM OF B 2UT 133 9.2 A SCALING FORMULA . 134 9.3 TWO INTERMEDIATE RESULTS 135 9.4 A FORMULA FOR P R F ^ H , W VP R W AND ITS NORMAL DERIVATIVE ... 137 9.5 AN EMBEDDING OF F IN E 138 - 9.6 A SOBOLEV NORM ON E 1 . . . I 140 9.7 ESTIMATES ON THE RESOLVENT OF A 144 9.8 REGULARIZING PROPERTIES OF THE RESOLVENT OF A 146 9.9 UNIFORM ESTIMATES ON THE KERNEL F U (A ) 150 9.10 THE MATRIX STRUCTURE OF A AS T * +00 153 9.11 THE ASYMPTOTICS OF THE OPERATOR F U {A^) AS T * +00 155 9.12 PROOF OF THEOREM 9.5 155 9.13 THE OPERATORS ^ A ,B,C,T * * * * * 157 9.14 PROOF OF THEOREM 9.6 160 9.15 PROOF OF THEOREM 6.15 162 9.16 PROOF OF THEOREM 6.16 163 10 THE ASYMPTOTICS OF THE METRIC G {Y R)W) AS T - +00 165 10.1 THE LIFT OF SECTIONS OF KER D Y TO SECTIONS OF KER A^ ] ,-*** 165 10.2 THE LIFT OF SECTIONS OF KER D Y TO HARMONIC FORMS IN E FO R 171 10.3 PROOF OF THEOREM 6.10 174 11 THE ANALYSIS OF THE TWO PARAMETER SEMI-GROUP EXP(* A T ) IN THE RANGE UE]0,L],TG[0,I] 177 11.1 THE LIMIT AS U- OOF $TR S [AT HV EXP(-A2 )T )] 178 11.2 LOCALIZATION OF THE PROBLEM 179 11.3 A RESCALING OF THE NORMAL COORDINATE Z O 182 11.4 A LOCAL COORDINATE SYSTEM NEAR W AND A TRIVIALIZATION OF NYA(T^_S) S 182 SOCIETE MATHEMATIQUE DE FRANCE VI CONTENTS 11.5 THE TAYLOR EXPANSION OF THE OPERATOR B U I 185 11.6 REPLACING X BY {T R X) VO . * 186 11.7 RESCALING OF THE .VARIABLE Z AND OF THE CLIFFORD VARIABLES 187 11.8 THE MATRIX STRUCTURE OF I%%? /T 190 11.9 A FAMILY OF SOBOLEV SPACES WITH WEIGHTS 192 11.10 PROOF OF THEOREM 11.5 193 11.11 PROOF OF THEOREM 6.17 193 12 THE ANALYSIS OF THE KERNEL OF F U (A 2U T/ J FOR T 0 AS U - 0 195 12.1 LOCALIZATION OF THE PROBLEM 196 12.2 A LOCAL COORDINATE SYSTEM NEAR YO * W AND A TRIVIALIZATION OF A(T^ ^X) 196 12.3 REPLACING THE FIBRE X BY (T R X) YO 196 12.4 RESCALING OF THE VARIABLE Z AND OF THE HORIZONTAL CLIFFORD VARIABLES . 197 12.5 THE ASYMPTOTICS OF THE OPERATOR L UV ^,, U AS U * 0 198 12.6 PROOF OF THEOREM 6.8 . . 203 12.7 PROOF OF THE FIRST HALF OF THEOREM 6.18 203 13 THE ANALYSIS OF THE TWO PARAMETER OPERATOR EXP(* A T ) IN THE RANGE U E]0,1], T /U 213 13.1 A PROOF OF THEOREM 6.9: THE PROBLEM IS LOCALIZABLE ON W 214 13.2 AN ORTHOGONAL SPLITTING OF TX AND A CONNECTION ON TX 216 13.3 A LOCAL COORDINATE SYSTEM NEAR YO * W AND A TRIVIALIZATION 217 13.4 REPLACING X BY (T R X) YO ; 219 13.5 RESCALING OF Z AND OF THE HORIZONTAL CLIFFORD VARIABLES 220 13.6 A FORMULA FOR %%$! 222 13.7 THE ALGEBRAIC STRUCTURE OF THE OPERATOR IE 3 ^ AS U * 0 225 13.8 THE MATRIX STRUCTURE OF THE OPERATOR 2*^? AS T * +OO 229 13.9 THE ASYMPTOTICS OF FR^^A^TK^^F^ 1 . 232 13.10 A FAMILY OF SOBOLEV SPACES WITH WEIGHTS 235 13.11 THE OPERATOR E YO . 236 13.12 PROOF OF THEOREM 13.2 237 13.13 A PROOF OF THEOREM 6.19 237 AN EVALUATION OF THE LIMIT OI 6 UT T AS T * +OO 237 THE CONNECTION 3V-VA(^S)§A(R-)A(T-(. 1 )X) 246 THE ALGEBRAIC STRUCTURE OF %%VJ! AS U * 0 247 AN ESTIMATE ON 6 UIT / U - #* | 250 13.14 A PROOF OF THE SECOND HALF OF THEOREM 6.18 251 ASTERISQUE CONTENTS - VII 14 A PROOF OF THEOREM 0.2 259 14.1 A CLOSED FORM ON R+ X R+ 259 14.2 THE ASYMPTOTICS OF THE 7 S 260 THE TERM 7{ 260 THE TERM / : 262 THE TERM 7 264 THE TERM 7F 264 THE RIGHT-HAND SIDE OF (14.6) 265 14.3 MATCHING THE DIVERGENCES 266 14.4 PROOF OF THEOREM 0.2 266 15 A NEW DERIVATION OF THE ASYMPTOTICS OF THE GENERALIZED SUPERTRACES ASSOCIATED TO A SHORT EXACT SEQUENCE 267 15.1 A FAMILY OF IMMERSIONS 268 15.2 THE SUPERCONNECTION 26 T 269 BIBLIOGRAPHY 273 SOCIETE MATHEMATIQUE DE FRANCE
any_adam_object 1
author Bismut, Jean-Michel 1948-
author_GND (DE-588)141840056
author_facet Bismut, Jean-Michel 1948-
author_role aut
author_sort Bismut, Jean-Michel 1948-
author_variant j m b jmb
building Verbundindex
bvnumber BV011994249
classification_rvk SI 832
ctrlnum (OCoLC)245713784
(DE-599)BVBBV011994249
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01737nam a2200409 cb4500</leader><controlfield tag="001">BV011994249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990127 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980609s1997 xx d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245713784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011994249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bismut, Jean-Michel</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141840056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic families of immersions and higher analytic torsion forms</subfield><subfield code="c">Jean-Michel Bismut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Paris]</subfield><subfield code="b">Soc. Math. de France</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 275 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">244</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Immersion</subfield><subfield code="g">Differentialgeometrie</subfield><subfield code="0">(DE-588)4191446-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsion</subfield><subfield code="0">(DE-588)4125469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Immersion</subfield><subfield code="g">Differentialgeometrie</subfield><subfield code="0">(DE-588)4191446-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Torsion</subfield><subfield code="0">(DE-588)4125469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">244</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">244</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008117227&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008117227</subfield></datafield></record></collection>
id DE-604.BV011994249
illustrated Illustrated
indexdate 2025-02-03T16:57:40Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008117227
oclc_num 245713784
open_access_boolean
owner DE-20
DE-355
DE-BY-UBR
DE-29T
DE-824
DE-384
DE-12
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-11
owner_facet DE-20
DE-355
DE-BY-UBR
DE-29T
DE-824
DE-384
DE-12
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-11
physical VII, 275 S. graph. Darst.
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Soc. Math. de France
record_format marc
series Astérisque
series2 Astérisque
spellingShingle Bismut, Jean-Michel 1948-
Holomorphic families of immersions and higher analytic torsion forms
Astérisque
Immersion Differentialgeometrie (DE-588)4191446-6 gnd
Torsion (DE-588)4125469-7 gnd
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Holomorphie (DE-588)4160484-2 gnd
subject_GND (DE-588)4191446-6
(DE-588)4125469-7
(DE-588)4031996-9
(DE-588)4160484-2
title Holomorphic families of immersions and higher analytic torsion forms
title_auth Holomorphic families of immersions and higher analytic torsion forms
title_exact_search Holomorphic families of immersions and higher analytic torsion forms
title_full Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut
title_fullStr Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut
title_full_unstemmed Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut
title_short Holomorphic families of immersions and higher analytic torsion forms
title_sort holomorphic families of immersions and higher analytic torsion forms
topic Immersion Differentialgeometrie (DE-588)4191446-6 gnd
Torsion (DE-588)4125469-7 gnd
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Holomorphie (DE-588)4160484-2 gnd
topic_facet Immersion Differentialgeometrie
Torsion
Komplexe Mannigfaltigkeit
Holomorphie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV002579439
work_keys_str_mv AT bismutjeanmichel holomorphicfamiliesofimmersionsandhigheranalytictorsionforms