Integration - a functional approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bichteler, Klaus 1938- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel [u.a.] Birkhäuser 1998
Schriftenreihe:Birkhäuser advanced texts
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV011849152
003 DE-604
005 20010920
007 t|
008 980317s1998 gw |||| 00||| eng d
016 7 |a 953180531  |2 DE-101 
020 |a 3764359366  |9 3-7643-5936-6 
020 |a 0817659366  |9 0-8176-5936-6 
035 |a (OCoLC)38910271 
035 |a (DE-599)BVBBV011849152 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-384  |a DE-20  |a DE-739  |a DE-29T  |a DE-824  |a DE-898  |a DE-355  |a DE-91G  |a DE-19  |a DE-521  |a DE-526  |a DE-634  |a DE-188 
050 0 |a QA312.B53 1998 
082 0 |a 515/.43 21 
082 0 |a 515/.43  |2 21 
084 |a SK 430  |0 (DE-625)143239:  |2 rvk 
084 |a 27  |2 sdnb 
084 |a MAT 280f  |2 stub 
100 1 |a Bichteler, Klaus  |d 1938-  |e Verfasser  |0 (DE-588)106060279  |4 aut 
245 1 0 |a Integration - a functional approach  |c Klaus Bichteler 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 1998 
300 |a VIII, 193 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Birkhäuser advanced texts 
650 4 |a Integrals 
650 4 |a Measure theory 
650 0 7 |a Integrationstheorie  |0 (DE-588)4138369-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Maßtheorie  |0 (DE-588)4074626-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Lebesgue-Integral  |0 (DE-588)4034949-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Riemannsches Integral  |0 (DE-588)4049996-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Integrationstheorie  |0 (DE-588)4138369-2  |D s 
689 1 |5 DE-604 
689 2 0 |a Maßtheorie  |0 (DE-588)4074626-4  |D s 
689 2 |5 DE-604 
689 3 0 |a Riemannsches Integral  |0 (DE-588)4049996-0  |D s 
689 3 |8 1\p  |5 DE-604 
689 4 0 |a Lebesgue-Integral  |0 (DE-588)4034949-4  |D s 
689 4 |8 2\p  |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008003466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008003466 

Datensatz im Suchindex

DE-19_call_number 1601/Zi 258 Bich 31246
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 280f 2001 A 7657
DE-BY-TUM_katkey 1196320
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020261038
DE-BY-UBM_katkey 2671859
DE-BY-UBM_media_number 99992441742
_version_ 1823052339131449344
adam_text Contents Preface vii Chapter I Review 1 1.1 Introduction 1 1.2 Notation 3 1.3 The Theorem of Stone Weierstrafi 8 1.4 The Riemann Integral 17 1.5 An Integrability Criterion 21 1.6 The Permanence Properties 23 1.7 Seminorms 28 Chapter II Extension of the Integral 31 II. 1 E additivity 33 11.2 Elementary Integrals 35 11.3 The Daniell Mean 42 11.4 Negligible Functions and Sets 48 11.5 Integrable Functions 52 11.6 Extending the Integral 58 11.7 Integrable Sets 61 11.8 Example of a Non Integrable Function 66 Chapter III Measurability 69 111.1 Littlewood s Principles 70 111.2 The Permanence Properties 73 111.3 The Integrability Criterion 75 111.4 Measurable Sets 81 111.5 Baire and Borel Functions 85 111.6 Further Properties of Daniell s Mean 92 111.7 The Procedures of Lebesgue and Carathedory 95 vi Chapter IV The Classical Banach Spaces 101 IV.1 The p norms 102 IV.2 The CP spaces 105 IV.3 The LP spaces 108 IV.4 Linear Functionals 112 IV.5 The Dual of LP 118 IV.6 The Hilbert space L2 122 Chapter V Operations on Measures 125 V.I Products of Elementary Integrals 125 V.2 The Theorems of Fubini and Tonelli 130 V.3 An Application: Convolution 133 V.4 An Application: Marcinkiewicz Interpolation 134 V.5 Signed Measures 137 V.6 The Space of Measures 144 V.7 Measures with Densitites 151 V.8 The Radon Nikodym Theorem 154 V.9 An Application: Conditional Expectation 155 V.10 Differentiation 157 Appendix A Answers to Selected Problems 165 References 180 Index of Notations 181 Index 184
any_adam_object 1
author Bichteler, Klaus 1938-
author_GND (DE-588)106060279
author_facet Bichteler, Klaus 1938-
author_role aut
author_sort Bichteler, Klaus 1938-
author_variant k b kb
building Verbundindex
bvnumber BV011849152
callnumber-first Q - Science
callnumber-label QA312
callnumber-raw QA312.B53 1998
callnumber-search QA312.B53 1998
callnumber-sort QA 3312 B53 41998
callnumber-subject QA - Mathematics
classification_rvk SK 430
classification_tum MAT 280f
ctrlnum (OCoLC)38910271
(DE-599)BVBBV011849152
dewey-full 515/.4321
515/.43
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.43 21
515/.43
dewey-search 515/.43 21
515/.43
dewey-sort 3515 243 221
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02377nam a2200613 c 4500</leader><controlfield tag="001">BV011849152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010920 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980317s1998 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">953180531</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764359366</subfield><subfield code="9">3-7643-5936-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817659366</subfield><subfield code="9">0-8176-5936-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38910271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011849152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA312.B53 1998</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.43 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.43</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bichteler, Klaus</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106060279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integration - a functional approach</subfield><subfield code="c">Klaus Bichteler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 193 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser advanced texts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008003466&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008003466</subfield></datafield></record></collection>
id DE-604.BV011849152
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 3764359366
0817659366
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008003466
oclc_num 38910271
open_access_boolean
owner DE-384
DE-20
DE-739
DE-29T
DE-824
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-521
DE-526
DE-634
DE-188
owner_facet DE-384
DE-20
DE-739
DE-29T
DE-824
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-521
DE-526
DE-634
DE-188
physical VIII, 193 S.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Birkhäuser
record_format marc
series2 Birkhäuser advanced texts
spellingShingle Bichteler, Klaus 1938-
Integration - a functional approach
Integrals
Measure theory
Integrationstheorie (DE-588)4138369-2 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Maßtheorie (DE-588)4074626-4 gnd
Lebesgue-Integral (DE-588)4034949-4 gnd
Riemannsches Integral (DE-588)4049996-0 gnd
subject_GND (DE-588)4138369-2
(DE-588)4072852-3
(DE-588)4074626-4
(DE-588)4034949-4
(DE-588)4049996-0
title Integration - a functional approach
title_auth Integration - a functional approach
title_exact_search Integration - a functional approach
title_full Integration - a functional approach Klaus Bichteler
title_fullStr Integration - a functional approach Klaus Bichteler
title_full_unstemmed Integration - a functional approach Klaus Bichteler
title_short Integration - a functional approach
title_sort integration a functional approach
topic Integrals
Measure theory
Integrationstheorie (DE-588)4138369-2 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Maßtheorie (DE-588)4074626-4 gnd
Lebesgue-Integral (DE-588)4034949-4 gnd
Riemannsches Integral (DE-588)4049996-0 gnd
topic_facet Integrals
Measure theory
Integrationstheorie
Integration Mathematik
Maßtheorie
Lebesgue-Integral
Riemannsches Integral
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008003466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bichtelerklaus integrationafunctionalapproach