Brauer groups, Hopf algebras and Galois theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Caenepeel, Stefaan 1956- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Kluwer 1998
Schriftenreihe:K-monographs in mathematics 4
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV011829351
003 DE-604
005 20051114
007 t|
008 980316s1998 xx |||| 00||| eng d
020 |a 079234829X  |9 0-7923-4829-X 
035 |a (OCoLC)37640417 
035 |a (DE-599)BVBBV011829351 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-739  |a DE-19  |a DE-11  |a DE-29T 
050 0 |a QA251.3 
082 0 |a 512/.55  |2 21 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
100 1 |a Caenepeel, Stefaan  |d 1956-  |e Verfasser  |0 (DE-588)123804132  |4 aut 
245 1 0 |a Brauer groups, Hopf algebras and Galois theory  |c by Stefaan Caenepeel 
264 1 |a Dordrecht [u.a.]  |b Kluwer  |c 1998 
300 |a XVI, 488 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a K-monographs in mathematics  |v 4 
650 7 |a Galois-theorie  |2 gtt 
650 7 |a Groepen (wiskunde)  |2 gtt 
650 7 |a Hopf-algebra's  |2 gtt 
650 4 |a Brauer groups 
650 4 |a Galois theory 
650 4 |a Hopf algebras 
830 0 |a K-monographs in mathematics  |v 4  |w (DE-604)BV011222840  |9 4 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007988005&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007988005 

Datensatz im Suchindex

DE-19_call_number 1601/SK 230 C127
DE-19_location 95
DE-BY-UBM_katkey 2227952
DE-BY-UBM_media_number 41601543200016
_version_ 1823051886984429568
adam_text Contents Preface xi I The Brauer group of a commutative ring 1 1 Morita theory for algebras without a unit 3 1.1 Morita contexts 3 1.2 Dual pairs and elementary algebras 10 1.3 Invertible modules 13 1.4 Left modules versus bimodules 15 2 Azumaya algebras and Taylor Azumaya algebras 19 2.1 Central algebras, the separator and the trace map 19 2.2 Taylor Azumaya algebras 23 2.3 The Rosenberg Zelinsky exact sequence 33 3 The Brauer group 35 3.1 Equivalent Taylor Azumaya algebra 35 3.2 The (big) Brauer group 39 3.3 The splitting theorem for Taylor Azumaya algebras 41 3.4 The determinant map for an Azumaya algebra 48 3.5 The splitting theorem for semilocal rings 49 4 Central separable algebras 55 4.1 Separable algebras 55 4.2 Central separable algebras 60 4.3 Flat Taylor Azumaya algebras 70 5 Amitsur cohomology and etale cohomology 77 5.1 Grothendieck topologies 77 viii Contents 5.2 Amitsur cohomology 79 5.3 The category of sheaves 81 5.4 Direct and inverse image sheaves and presheaves 87 5.5 Stalks in the etale topology 91 5.6 Etale cohomology 96 5.7 Flabby sheaves 102 6 Cohomological interpretation of the Brauer group 107 6.1 Cohomology with values in the category of invertible modules .... 107 6.2 The Brauer group versus the second cohomology group 113 6.3 Taylor s theorem 121 6.4 Verschoren s construction and Takeuchi s exact sequence 130 6.5 The Brauer group is torsion 134 6.6 The Mayer Vietoris exact sequence 136 6.7 Gabber s theorem 139 6.8 The Brauer group modulo a nilpotent ideal 142 6.9 The Brauer group of a regular ring 144 6.10 Further results and examples 149 6.11 The Brauer group of a scheme and further generalizations 158 II Hopf algebras and Galois theory 171 7 Hopf algebras 173 7.1 Algebras, coalgebras and Hopf algebras 173 7.2 Modules and comodules 189 8 Galois objects 197 8.1 Relative Hopf modules and Galois objects 197 8.2 Galois objects and graded ring theory 205 8.3 Galois objects and Morita theory 207 8.4 Galois extensions 210 8.5 Galois objects and classical Galois theory 212 8.6 Integrals 213 Contents jx 8.7 Galois coobjects 215 9 Cohomology over Hopf algebras 223 9.1 Sweedler cohomology 223 9.2 Harrison cohomology 226 10 The group of Galois (co)objects 235 10.1 Galois coobjects and Harrison cohomology 235 10.2 Galois coobjects with geometric normal basis 242 10.3 The group of Galois coobjects and Amitsur cohomology 247 10.4 The Picard group of a coalgebra 250 10.5 The group of Galois objects 261 10.6 The split part of the group of Galois objects 275 10.7 About the Picard invariant map 276 10.8 Pairings and noncommutative Galois objects 277 11 Some examples 283 11.1 Group algebras 283 11.2 Monogenic Larson orders 286 11.3 Examples in characteristic p 295 III The Brauer Long group of a commutative ring 303 12 /f Azumaya algebras 305 12.1 Dimodules and dimodule algebras 305 12.2 // Azumaya algebras 313 12.3 Separability conditions 317 12.4 Examples of // Azumaya algebras 327 13 The Brauer Long group of a commutative ring 339 13.1 The Brauer Long group and its subgroups 339 13.2 The Brauer group of // module Azumaya algebras 345 13.3 The Picard group of // dimodules 351 13.4 The cup product 355 x Contents 13.5 The split part of the Brauer Long group 359 13.6 A dimodule version of the Rosenberg Zelinsky exact sequence .... 366 13.7 A complex for the Brauer Long group 368 13.8 The Hopf algebra H = EomR(H,K) 372 13.9 A short exact sequence for the Brauer Long group 375 13.10Application to some particular cases 384 13.11 Computing 0(7?,^)^ 405 13.12The multiplication rules 412 13.13The Brauer Long group of a scheme 436 14 The Brauer group of Yetter Drinfel d module algebras 439 14.1 Yetter Drinfel d modules 439 14.2 // Azumaya algebras and the Brauer group 442 14.3 The subgroups of BQ(k,H) 444 A Abelian categories and homological algebra 451 A.I Abelian categories 451 A.2 Derived functors 453 B Faithfully flat descent 459 C Elementary algebraic K theory 467 Bibliography 473 Index 480
any_adam_object 1
author Caenepeel, Stefaan 1956-
author_GND (DE-588)123804132
author_facet Caenepeel, Stefaan 1956-
author_role aut
author_sort Caenepeel, Stefaan 1956-
author_variant s c sc
building Verbundindex
bvnumber BV011829351
callnumber-first Q - Science
callnumber-label QA251
callnumber-raw QA251.3
callnumber-search QA251.3
callnumber-sort QA 3251.3
callnumber-subject QA - Mathematics
classification_rvk SK 230
ctrlnum (OCoLC)37640417
(DE-599)BVBBV011829351
dewey-full 512/.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.55
dewey-search 512/.55
dewey-sort 3512 255
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01423nam a2200397 cb4500</leader><controlfield tag="001">BV011829351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051114 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980316s1998 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">079234829X</subfield><subfield code="9">0-7923-4829-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37640417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011829351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caenepeel, Stefaan</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123804132</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brauer groups, Hopf algebras and Galois theory</subfield><subfield code="c">by Stefaan Caenepeel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 488 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">K-monographs in mathematics</subfield><subfield code="v">4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Galois-theorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groepen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hopf-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brauer groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf algebras</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">K-monographs in mathematics</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV011222840</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007988005&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007988005</subfield></datafield></record></collection>
id DE-604.BV011829351
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 079234829X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007988005
oclc_num 37640417
open_access_boolean
owner DE-739
DE-19
DE-BY-UBM
DE-11
DE-29T
owner_facet DE-739
DE-19
DE-BY-UBM
DE-11
DE-29T
physical XVI, 488 S.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Kluwer
record_format marc
series K-monographs in mathematics
series2 K-monographs in mathematics
spellingShingle Caenepeel, Stefaan 1956-
Brauer groups, Hopf algebras and Galois theory
K-monographs in mathematics
Galois-theorie gtt
Groepen (wiskunde) gtt
Hopf-algebra's gtt
Brauer groups
Galois theory
Hopf algebras
title Brauer groups, Hopf algebras and Galois theory
title_auth Brauer groups, Hopf algebras and Galois theory
title_exact_search Brauer groups, Hopf algebras and Galois theory
title_full Brauer groups, Hopf algebras and Galois theory by Stefaan Caenepeel
title_fullStr Brauer groups, Hopf algebras and Galois theory by Stefaan Caenepeel
title_full_unstemmed Brauer groups, Hopf algebras and Galois theory by Stefaan Caenepeel
title_short Brauer groups, Hopf algebras and Galois theory
title_sort brauer groups hopf algebras and galois theory
topic Galois-theorie gtt
Groepen (wiskunde) gtt
Hopf-algebra's gtt
Brauer groups
Galois theory
Hopf algebras
topic_facet Galois-theorie
Groepen (wiskunde)
Hopf-algebra's
Brauer groups
Galois theory
Hopf algebras
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007988005&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV011222840
work_keys_str_mv AT caenepeelstefaan brauergroupshopfalgebrasandgaloistheory