Introduction to combinatorics

This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Erickson, Martin J. 1963-2013 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Wiley 1996
Schriftenreihe:Wiley-Interscience series in discrete mathematics and optimization
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV011520694
003 DE-604
005 20220907
007 t|
008 970904s1996 xx d||| |||| 00||| eng d
020 |a 0471154083  |9 0-471-15408-3 
035 |a (OCoLC)845219156 
035 |a (DE-599)BVBBV011520694 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-824  |a DE-91G  |a DE-634  |a DE-83 
050 0 |a QA164 
082 0 |a 511/.6  |2 20 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a MAT 050f  |2 stub 
100 1 |a Erickson, Martin J.  |d 1963-2013  |e Verfasser  |0 (DE-588)139664181  |4 aut 
245 1 0 |a Introduction to combinatorics  |c Martin J. Erickson 
264 1 |a New York [u.a.]  |b Wiley  |c 1996 
300 |a XII, 195 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Wiley-Interscience series in discrete mathematics and optimization 
520 3 |a This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner. 
650 7 |a Combinatieleer  |2 gtt 
650 7 |a Combinatória  |2 larpcal 
650 4 |a Combinatorial analysis 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 |5 DE-604 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007752532 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 MAT 050f 2006 A 4303
DE-BY-TUM_katkey 1541089
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020749151
_version_ 1820864811494277120
any_adam_object
author Erickson, Martin J. 1963-2013
author_GND (DE-588)139664181
author_facet Erickson, Martin J. 1963-2013
author_role aut
author_sort Erickson, Martin J. 1963-2013
author_variant m j e mj mje
building Verbundindex
bvnumber BV011520694
callnumber-first Q - Science
callnumber-label QA164
callnumber-raw QA164
callnumber-search QA164
callnumber-sort QA 3164
callnumber-subject QA - Mathematics
classification_rvk SK 170
SK 890
classification_tum MAT 050f
ctrlnum (OCoLC)845219156
(DE-599)BVBBV011520694
dewey-full 511/.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.6
dewey-search 511/.6
dewey-sort 3511 16
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02891nam a2200433 c 4500</leader><controlfield tag="001">BV011520694</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220907 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">970904s1996 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471154083</subfield><subfield code="9">0-471-15408-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845219156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011520694</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA164</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erickson, Martin J.</subfield><subfield code="d">1963-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139664181</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to combinatorics</subfield><subfield code="c">Martin J. Erickson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 195 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley-Interscience series in discrete mathematics and optimization</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatieleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatória</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007752532</subfield></datafield></record></collection>
genre 1\p (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV011520694
illustrated Illustrated
indexdate 2024-12-23T14:34:43Z
institution BVB
isbn 0471154083
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007752532
oclc_num 845219156
open_access_boolean
owner DE-703
DE-824
DE-91G
DE-BY-TUM
DE-634
DE-83
owner_facet DE-703
DE-824
DE-91G
DE-BY-TUM
DE-634
DE-83
physical XII, 195 S. graph. Darst.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Wiley
record_format marc
series2 Wiley-Interscience series in discrete mathematics and optimization
spellingShingle Erickson, Martin J. 1963-2013
Introduction to combinatorics
Combinatieleer gtt
Combinatória larpcal
Combinatorial analysis
Kombinatorik (DE-588)4031824-2 gnd
subject_GND (DE-588)4031824-2
(DE-588)4151278-9
title Introduction to combinatorics
title_auth Introduction to combinatorics
title_exact_search Introduction to combinatorics
title_full Introduction to combinatorics Martin J. Erickson
title_fullStr Introduction to combinatorics Martin J. Erickson
title_full_unstemmed Introduction to combinatorics Martin J. Erickson
title_short Introduction to combinatorics
title_sort introduction to combinatorics
topic Combinatieleer gtt
Combinatória larpcal
Combinatorial analysis
Kombinatorik (DE-588)4031824-2 gnd
topic_facet Combinatieleer
Combinatória
Combinatorial analysis
Kombinatorik
Einführung
work_keys_str_mv AT ericksonmartinj introductiontocombinatorics