Advances in combinatorial methods and applications to probability and statistics

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:German
Veröffentlicht: Boston [u.a.] Birkhäuser 1997
Schriftenreihe:Statistics for industry and technology
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV011446926
003 DE-604
005 19980205
007 t|
008 970715s1997 gw ad|| |||| 00||| ger d
016 7 |a 950625639  |2 DE-101 
020 |a 376433908X  |c (Basel ...) Pp. : sfr 148.00  |9 3-7643-3908-X 
020 |a 081763908X  |c (Boston) Pp.  |9 0-8176-3908-X 
035 |a (OCoLC)36343429 
035 |a (DE-599)BVBBV011446926 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-91G  |a DE-384  |a DE-703  |a DE-824  |a DE-11 
050 0 |a QA273.45 
082 0 |a 519.2  |2 21 
084 |a SE 234  |0 (DE-625)142750:13698  |2 rvk 
084 |a SK 800  |0 (DE-625)143256:  |2 rvk 
084 |a MAT 050f  |2 stub 
084 |a MAT 600f  |2 stub 
245 1 0 |a Advances in combinatorial methods and applications to probability and statistics  |c N. Balakrishnan ed. 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 1997 
300 |a XXXIV, 562 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Statistics for industry and technology 
500 |a Literaturangaben 
600 1 7 |a Mohanty, Gopal  |d 1933-  |0 (DE-588)119469243  |2 gnd  |9 rswk-swf 
650 7 |a Probabilités combinatoires  |2 ram 
650 7 |a Statistique mathématique  |2 ram 
650 4 |a Combinatorial probabilities 
650 4 |a Mathematical statistics 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Wahrscheinlichkeitstheorie  |0 (DE-588)4079013-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Bibliografie  |0 (DE-588)4006432-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Wahrscheinlichkeitstheorie  |0 (DE-588)4079013-7  |D s 
689 0 1 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 1 1 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 1 |5 DE-604 
689 2 0 |a Mohanty, Gopal  |d 1933-  |0 (DE-588)119469243  |D p 
689 2 1 |a Bibliografie  |0 (DE-588)4006432-3  |D s 
689 2 |5 DE-604 
700 1 |a Balakrishnan, Narayanaswamy  |d 1956-  |e Sonstige  |0 (DE-588)122214846  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007699824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007699824 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 050f 2001 B 1238
DE-BY-TUM_katkey 842241
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020172518
_version_ 1820885255664435200
adam_text Contents Preface xvii Sri Gopal Mohanty—Life and Works xix List of Contributors xxvii List of Tables xxxi List of Figures xxxiii Part I—Lattice Paths and Combinatorial Methods 1 Lattice Paths and Faber Polynomials Ira M. Gessel and Sangwook Ree 3 1.1 Introduction, 3 1.2 Faber Polynomials, 6 1.3 Counting Paths, 7 1.4 A Positivity Result, 10 1.5 Examples, 11 References, 13 2 Lattice Path Enumeration and Umbral Calculus Heinrich Niederhausen 15 2.1 Introduction, 15 2.1.1 Notation, 16 2.2 Initial Value Problems, 16 2.2.1 The role of ex, 18 2.2.2 Piecewise affine boundaries, 18 2.2.3 Applications: Bounded paths, 19 2.3 Systems of Operator Equations, 20 2.3.1 Applications: Lattice paths with several step directions, 21 2.4 Symmetric Sheffer Sequences, 21 2.4.1 Applications: Weighted left turns, 22 2.4.2 Paths inside a band, 23 viii Contents 2.5 Geometric Sheffer Sequences, 24 2.5.1 Applications: Crossings, 25 References, 26 3 The Enumeration of Lattice Paths With Respect to Their Number of Turns C. Krattenthaler 29 3.1 Introduction, 29 3.2 Notation, 31 3.3 Motivating Examples, 31 3.4 Turn Enumeration of (Single) Lattice Paths, 36 3.5 Applications, 44 3.6 Nonintersecting Lattice Paths and Turns, 47 References, 55 4 Lattice Path Counting, Simple Random Walk Statistics, and Randomizations: An Analytic Approach Wolfgang Panny and Walter Katzenbeisser 59 4.1 Introduction, 59 4.2 Lattice Paths, 60 4.3 Simple Random Walks, 64 4.4 Randomized Random Walks, 70 References, 74 5 Combinatorial Identities: A Generalization of Dougall s Identity Erik Sparre Andersen and Mogens Esrom, Larsen 77 5.1 Introduction, 77 5.2 The Generalized Pfaff Saalschiitz Formula, 80 5.3 A Modified Pfaff Saalschiitz Sum of Type 11(4, 4,1)JV, 82 5.4 A Well Balanced 7/(5, 5,1)N Identity, 83 5.5 A Generalization of Dougall s Well Balanced 11(7, 7,1)N Identity, 85 References, 87 6 A Comparison of Two Methods for Random Labelling of Balls by Vectors of Integers Doron Zeilberger 89 6.1 First Way, 89 6.2 Second Way, 89 6.3 Variance and Standard Deviation, 91 Contents jx 6.4 Analysis of the Second Way, 92 References, 93 Part II—Applications to Probability Problems 7 On the Ballot Theorems Lajos Takdcs 97 7.1 Introduction, 97 7.2 The Classical Ballot Theorem, 97 7.3 The Original Proofs of Theorem 7.2.1, 100 7.4 Historical Background, 102 7.5 The General Ballot Theorem, 104 7.6 Some Combinatorial Identities, 107 7.7 Another Extension of The Classical Ballot Theorem, 109 References, 111 8 Some Results for Two Dimensional Random Walk Endre Csdki 115 8.1 Introduction, 115 8.2 Identities and Distributions, 118 8.3 Pairs of LRW Paths, 120 References, 123 9 Random Walks on SL(2, F2) and Jacobi Symbols of Quadratic Residues Toshihiro Watanabe 125 9.1 Introduction, 125 9.2 Preliminaries, 126 9.3 A Calculation of the Character x(aM,m) and Its Relation, 129 References, 133 10 Rank Order Statistics Related to a Generalized Random Walk Jagdish Saran and Sarita Rani 135 10.1 Introduction, 135 10.2 Some Auxiliary Results, 136 10.3 The Technique, 138 10.4 Definitions of Rank Order Statistics, 139 10.5 Distributions of N+*(a) and R+*n(a), 140 10.6 Distributions of A+ n(a) and Rf +n(a), 144 10.7 Distributions of N* n(a) and R*^n{a), 148 References, 151 x Contents 11 On a Subset Sum Algorithm and Its Probabilistic and Other Applications V. G. Voinov and M. S. Nikulin 153 11.1 Introduction, 153 11.2 A Derivation of the Algorithm, 154 11.3 A Class of Discrete Probability Distributions, 159 11.4 A Remark on a Summation Procedure When Constructing Partitions, 160 References, 162 12 I and J Polynomials in a Potpourri of Probability Problems Milton Sobel 165 12.1 Introduction, 165 12.2 Guide to the Problems of this Paper, 166 12.3 Triangular Network with Common Failure Probability q for Each Unit, 171 12.4 Duality Levels in a Square with Diagonals That Do Not Intersect: Problem 12.5, 177 References, 183 13 Stirling Numbers and Records N. Balakrishnan and V. B. Nevzorov 189 13.1 Stirling Numbers, 189 13.2 Generalized Stirling Numbers, 190 13.3 Stirling Numbers and Records, 193 13.4 Generalized Stirling Numbers and Records in the Fa scheme, 195 13.5 Record Values from Discrete Distributions and Generalized Stirling Numbers, 197 References, 198 Part III—Applications to Urn Models 14 Advances in Urn Models During The Past Two Decades Samuel Kotz and N. Balakrishnan 203 14.1 Introduction, 203 14.2 Polya Eggenberger Urns and Their Generalizations and Modifications, 206 14.3 Generalizations of the Classical Occupancy Model, 216 14.4 Ehrenfest Urn Model, 219 Contents xj 14.5 Polya Urn Model with a Continuum of Colors, 225 14.6 Stopping Problems in Urns, 226 14.7 Limit Theorems for Urns with Random Drawings, 227 14.8 Limit Theorems for Sequential Occupancy, 228 14.9 Limit Theorems for Infinite Urn Models, 230 14.10 Urn Models with Indistinguishable Balls (Bose Einstein Statistics), 231 14.11 Ewens Sampling Formula and Coalescent Urn Models, 233 14.12 Reinforcement Depletion (Compartmental) Urn Models, 237 14.13 Urn Models for Interpretation of Mathematical and Probabilistic Concepts and Engineering and Statistical Applications, 243 References, 247 15 A Unified Derivation of Occupancy and Sequential Occupancy Distributions Ch. A. Charalambides 259 15.1 Introduction, 259 15.2 Occupancy Distributions, 260 15.3 Sequential Occupancy Distributions, 267 References, 273 16 Moments, Binomial Moments and Combinatorics Janos Galambos 275 16.1 Basic Relations, 275 16.2 Linear Inequalities in Sk, pr and qr, 277 16.3 A Statistical Paradox and an Urn Model with Applications, 280 16.4 Quadratic Inequalities, 281 References, 283 Part IV—Applications to Queueing Theory 17 Nonintersecting Paths and Applications to Queueing Theory Walter Bohm, 287 17.1 Introduction, 287 17.2 Dissimilar Bernoulli Processes, 288 17.3 The r Node Series Jackson Network, 291 17.4 The Dummy Path Lemma for Poisson Processes, 295 17.5 A Special Variant of D/M/l Queues, 297 xii Contents References, 299 18 Transient Busy Period Analysis of Initially Non Empty M/G/l Queues—Lattice Path Approach Kanwar Sen and Manju Agarwal 301 18.1 Introduction, 301 18.2 Lattice Path Approach, 304 18.3 Discretized M/C2/l Model, 304 18.3.1 Transition probabilities, 304 18.3.2 Counting of lattice paths, 307 18.3.3 Busy period probability, 310 18.4 Continuous M/C2/l Model, 312 18.5 Particular Cases, 313 References, 313 19 Single Server Queueing System with Poisson Input: A Review of Some Recent Developments J. Medhi 317 19.1 Introduction, 317 19.2 Exceptional Service for the First Unit in Each Busy Period, 319 19.3 M/G/l With Random Setup Time S, 320 19.4 M/G/l System Under iV Policy, 322 19.5 M/G/l Under TV Policy and With Setup Time, 323 19.6 Queues With Vacation: M/G/l Queueing System With Vacation, 324 19.7 M/G/l Vm System, 325 19.8 M/G/l Vm With Exceptional First Vacation, 326 19.9 M/G/l Vs System, 327 19.10 M/G/l System With Vacation and Under iV Policy (With Threshold N), 328 19.11 Mx/G/l System With Batch Arrival, 332 19.12 Mx/G/l Under iV Policy, 332 19.13 Mx/G/l Vm and Mx/G/l Vs, 334 19.14 Mx/G/l Vacation Queues Under iV Policy, 334 19.15 Concluding Remarks, 335 References, 336 20 Recent Advances in the Analysis of Polling Systems Diwakar Gupta and Yavuz Giinalay 339 20.1 Introduction, 339 20.2 Notations and Preliminaries, 342 20.3 Main Results, 346 Contents xiii 20.4 Some Related Models, 350 20.4.1 Customer routing, 350 20.4.2 Stopping only at a preferred station, 351 20.4.3 Gated or mixed service policy, 351 20.4.4 State dependent setups, 352 20.4.5 Periodic monitoring during idle period, 354 20.5 Insights, 355 20.6 Future Directions, 357 References, 357 Part V—Applications to Waiting Time Problems 21 Waiting Times and Number of Appearances of Events in a Sequence of Discrete Random Variables Markos V. Koutras 363 21.1 Introduction, 363 21.2 Definitions and Notations, 365 21.3 General Results, 366 21.4 Waiting Times and Number of Occurrences of Delayed Recurrent Events, 370 21.5 Distribution of the Number of Success Runs in a Two State Markov Chain, 373 21.5.1 Non overlapping success runs, 374 21.5.2 Success runs of length at least k, 376 21.5.3 Overlapping success runs, 378 21.5.4 Number of non overlapping windows of length at most k containing exactly 2 successes, 378 21.6 Conclusions, 380 References, 380 22 On Sooner and Later Problems Between Success and Failure Runs Sigeo Aki 385 22.1 Introduction, 385 22.2 Number of Ocurrences of the Sooner Event Until the Later Waiting Time, 387 22.3 Joint Distribution of Numbers of Runs, 397 References, 399 xiv Contents 23 Distributions of Numbers of Success Runs Until the First Consecutive k Successes in Higher Order Markov Dependent Trials Katuomi Hirano, Sigeo Aki and Masayuki Uchida 401 23.1 Introduction, 401 23.2 Numbers of Success Runs in Higher Order Markov Chain, 403 23.3 Case / m, 408 References, 409 24 On Multivariate Distributions of Various Orders Obtained by Waiting for the r th Success Run of Length k in Trials With Multiple Outcomes Dem.etrios L. Antzoulakos and Andreas N. Philippou 411 24.1 Introduction, 412 24.2 Independent Trials, 413 24.3 Generalized Sequence of Order k, 420 References, 423 25 A Multivariate Negative Binomial Distribution of Order k Arising When Success Runs are Allowed to Overlap Gregory A. Tripsiannis and Andreas N. Philippou 427 25.1 Introduction, 427 25.2 Multivariate Negative Binomial Distribution of Order k, Type III, 429 25.3 Characteristics and Distributional Properties of MNBk,ni(r; qi,..., qm), 431 References, 436 Part VI—Applications to Distribution Theory 26 The Joint Energy Distributions of the Bose Einstein and of the Fermi Dirac Particles /. Vincze and R. Toros 441 26.1 Introduction, 441 26.2 Derivation of the Joint Distribution and of the Joint Entropy, 442 26.2.1 On the method, 442 26.2.2 Joint distribution of the number of particles in energy intervals, 444 , 26.3 Determination of the Limit Distributions, 447 26.4 Discussion, 448 Contents xv References, 449 27 On Modified q Bessel Functions and Some Statistical Applications A. W. Kem,p 45X 27.1 Introduction, 451 27.2 Notation, 453 27.3 The Distribution of the Difference of Two Euler Random Variables, 456 27.4 The Distribution of the Difference of Two Heine Random Variables, 458 27.5 Comments on the Distribution of the Difference of Two Generalized Euler Random Variables, 460 References, 462 28 A ^ Logarithmic Distribution C. David Kemp 465 28.1 Introduction, 465 28.2 A q Logarithmic Distribution, 467 28.3 A Group Size Model for the Distribution, 469 References, 470 29 Bernoulli Learning Models: Uppuluri Numbers K. G. Janardan 471 29.1 Introduction, 471 29.2 The General Model, 472 29.2.1 Special cases of the general probabilistic model, 474 29.3 Waiting Time Learning Models, 476 29.3.1 Special cases of waiting time learning models, 478 References, 480 Part VII—Applications to Nonparametric Statistics 30 Linear Nonparametric Tests Against Restricted Alternatives: The Simple Tree Order and The Simple Order S. Chakraborti and W. Schaafsm,a 483 30.1 Introduction, 484 30.2 Background, 485 30.3 Objectives, 486 30.4 Exploration and Reformulation, 487 30.5 Test for the Simple Tree Problem, 487 30.5.1 Some particular cases, 490 30.5.2 Derivation of the MSSMP test, 493 xvi Contents 30.6 Test for the Simple Order Problem, 496 30.6.1 Derivation of the (A)MSSMP test, 497 30.6.2 Power comparisons, 499 30.7 Extending the Class of SMP Tests, 501 Appendix, 503 References, 505 31 Nonparametric Estimation of the Ratio of Variance Components M. Mahibbur Rahman and Z. Govindarajulu 507 31.1 Introduction, 507 31.2 Proposed Estimation Procedure, 510 31.3 Monte Carlo Comparison, 512 31.4 Adjustment for Bias, 514 References, 515 32 Limit Theorems for M Processes Via Rank Statistics Processes M. Huskovd 521 32.1 Introduction, 521 32.2 Case 9X = ¦ ¦ ¦ = 0n, 522 32.3 Change Point Alternatives, 526 References, 533 Author Index 535 Subject Index 545
any_adam_object 1
author_GND (DE-588)122214846
building Verbundindex
bvnumber BV011446926
callnumber-first Q - Science
callnumber-label QA273
callnumber-raw QA273.45
callnumber-search QA273.45
callnumber-sort QA 3273.45
callnumber-subject QA - Mathematics
classification_rvk SE 234
SK 800
classification_tum MAT 050f
MAT 600f
ctrlnum (OCoLC)36343429
(DE-599)BVBBV011446926
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02494nam a2200625 c 4500</leader><controlfield tag="001">BV011446926</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980205 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">970715s1997 gw ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">950625639</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376433908X</subfield><subfield code="c">(Basel ...) Pp. : sfr 148.00</subfield><subfield code="9">3-7643-3908-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">081763908X</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-3908-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36343429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011446926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.45</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SE 234</subfield><subfield code="0">(DE-625)142750:13698</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in combinatorial methods and applications to probability and statistics</subfield><subfield code="c">N. Balakrishnan ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIV, 562 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Statistics for industry and technology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Mohanty, Gopal</subfield><subfield code="d">1933-</subfield><subfield code="0">(DE-588)119469243</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilités combinatoires</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mohanty, Gopal</subfield><subfield code="d">1933-</subfield><subfield code="0">(DE-588)119469243</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balakrishnan, Narayanaswamy</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122214846</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007699824&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007699824</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV011446926
illustrated Illustrated
indexdate 2024-12-23T14:33:14Z
institution BVB
isbn 376433908X
081763908X
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007699824
oclc_num 36343429
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-384
DE-703
DE-824
DE-11
owner_facet DE-91G
DE-BY-TUM
DE-384
DE-703
DE-824
DE-11
physical XXXIV, 562 S. Ill., graph. Darst.
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Birkhäuser
record_format marc
series2 Statistics for industry and technology
spellingShingle Advances in combinatorial methods and applications to probability and statistics
Mohanty, Gopal 1933- (DE-588)119469243 gnd
Probabilités combinatoires ram
Statistique mathématique ram
Combinatorial probabilities
Mathematical statistics
Statistik (DE-588)4056995-0 gnd
Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd
Kombinatorik (DE-588)4031824-2 gnd
Bibliografie (DE-588)4006432-3 gnd
subject_GND (DE-588)119469243
(DE-588)4056995-0
(DE-588)4079013-7
(DE-588)4031824-2
(DE-588)4006432-3
(DE-588)4143413-4
title Advances in combinatorial methods and applications to probability and statistics
title_auth Advances in combinatorial methods and applications to probability and statistics
title_exact_search Advances in combinatorial methods and applications to probability and statistics
title_full Advances in combinatorial methods and applications to probability and statistics N. Balakrishnan ed.
title_fullStr Advances in combinatorial methods and applications to probability and statistics N. Balakrishnan ed.
title_full_unstemmed Advances in combinatorial methods and applications to probability and statistics N. Balakrishnan ed.
title_short Advances in combinatorial methods and applications to probability and statistics
title_sort advances in combinatorial methods and applications to probability and statistics
topic Mohanty, Gopal 1933- (DE-588)119469243 gnd
Probabilités combinatoires ram
Statistique mathématique ram
Combinatorial probabilities
Mathematical statistics
Statistik (DE-588)4056995-0 gnd
Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd
Kombinatorik (DE-588)4031824-2 gnd
Bibliografie (DE-588)4006432-3 gnd
topic_facet Mohanty, Gopal 1933-
Probabilités combinatoires
Statistique mathématique
Combinatorial probabilities
Mathematical statistics
Statistik
Wahrscheinlichkeitstheorie
Kombinatorik
Bibliografie
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007699824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT balakrishnannarayanaswamy advancesincombinatorialmethodsandapplicationstoprobabilityandstatistics