Branched standard spines of 3 manifolds

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benedetti, Riccardo (VerfasserIn), Petronio, Carlo (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: Berlin [u.a.] Springer 1997
Schriftenreihe:Lecture notes in mathematics 1653
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV011205617
003 DE-604
005 19970730
007 t|
008 970211s1997 gw d||| |||| 00||| ger d
016 7 |a 949609242  |2 DE-101 
020 |a 3540626271  |c kart. : DM 36.00  |9 3-540-62627-1 
035 |a (OCoLC)246275175 
035 |a (DE-599)BVBBV011205617 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-20  |a DE-739  |a DE-824  |a DE-91G  |a DE-355  |a DE-384  |a DE-19  |a DE-83  |a DE-11  |a DE-188  |a DE-706 
050 0 |a QA3 
050 0 |a QA613.2 
082 0 |a 510 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a 57N10  |2 msc 
084 |a MAT 572f  |2 stub 
100 1 |a Benedetti, Riccardo  |e Verfasser  |4 aut 
245 1 0 |a Branched standard spines of 3 manifolds  |c Riccardo Benedetti ; Carlo Petronio 
264 1 |a Berlin [u.a.]  |b Springer  |c 1997 
300 |a VIII, 132 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1653 
650 4 |a Three-manifolds (Topology) 
650 0 7 |a Dimension 3  |0 (DE-588)4321722-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Topologische Mannigfaltigkeit  |0 (DE-588)4185712-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Topologische Mannigfaltigkeit  |0 (DE-588)4185712-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Topologische Mannigfaltigkeit  |0 (DE-588)4185712-4  |D s 
689 1 1 |a Dimension 3  |0 (DE-588)4321722-9  |D s 
689 1 |5 DE-604 
700 1 |a Petronio, Carlo  |e Verfasser  |4 aut 
830 0 |a Lecture notes in mathematics  |v 1653  |w (DE-604)BV000676446  |9 1653 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516213&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007516213 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 001z 2001 B 999
DE-BY-TUM_katkey 815745
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020359659
_version_ 1820855217399267328
adam_text Contents 1 Motivations, plan and statements 1 1.1 Combinatorial realizations of topological categories 1 1.2 Branched standard spines and an outline of the construction 3 1.3 Graphic encoding 5 1.4 Statements of representation theorems 5 1.5 Existing literature and outline of contents 10 2 A review on standard spines and o graphs 13 2.1 Encoding 3 manifolds by o graphs 13 2.2 Reconstruction of the boundary 17 2.3 Surgery presentation of a mirrored manifold and ideal triangulations . . 20 3 Branched standard spines 23 3.1 Branchings on standard spines 23 3.2 Normal o graphs 26 3.3 Bicoloration of the boundary 28 3.4 Examples and existence results 32 3.5 Matveev Piergallini move on branched spines 37 4 Manifolds with boundary 40 4.1 Oriented branchings and flows 40 4.2 Extending the flow to a closed manifold 45 4.3 Flow preserving calculus: definitions and statements 47 4.4 Branched simple spines 50 4.5 Restoring the standard setting 55 4.6 The MP move which changes the flow 60 5 Combed closed manifolds 64 5.1 Simple vs. standard branched spines 64 5.2 The combed calculus 69 6 More on combings, and the closed calculus 73 6.1 Comparison of vector fields up to homotopy 73 6.2 Pontrjagin moves for vector fields, and complete classification 76 6.3 Combinatorial realization of closed manifolds 81 viii CONTENTS 7 Framed and spin manifolds 85 7.1 The Euler cochain 85 7.2 Framings of closed manifolds 87 7.3 The framing calculus 91 7.4 Spin structures on closed manifolds 94 7.5 The spin calculus 95 8 Branched spines and quantum invariants 98 8.1 More on spin structures 98 8.2 A review of recoupling theory and Reshetikhin Turaev Witten invariants 99 8.3 Turaev Viro invariants 101 8.4 An alternative computation of TV invariants 104 9 Problems and perspectives 108 9.1 Internal questions 108 9.2 Questions on invariants 110 9.3 Questions on geometric structures 116 10 Homology and cohomology computations 121 10.1 Homology, cohomology and duality 121 10.2 More homological invariants 123 10.3 Evenly framed knots in a spin manifold 125 Bibliography 127 Index 131
any_adam_object 1
author Benedetti, Riccardo
Petronio, Carlo
author_facet Benedetti, Riccardo
Petronio, Carlo
author_role aut
aut
author_sort Benedetti, Riccardo
author_variant r b rb
c p cp
building Verbundindex
bvnumber BV011205617
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
QA613.2
callnumber-search QA3
QA613.2
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
SK 350
classification_tum MAT 572f
ctrlnum (OCoLC)246275175
(DE-599)BVBBV011205617
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01940nam a2200505 cb4500</leader><controlfield tag="001">BV011205617</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970730 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">970211s1997 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">949609242</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540626271</subfield><subfield code="c">kart. : DM 36.00</subfield><subfield code="9">3-540-62627-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246275175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011205617</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57N10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benedetti, Riccardo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branched standard spines of 3 manifolds</subfield><subfield code="c">Riccardo Benedetti ; Carlo Petronio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 132 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1653</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petronio, Carlo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1653</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1653</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007516213&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007516213</subfield></datafield></record></collection>
id DE-604.BV011205617
illustrated Illustrated
indexdate 2024-12-23T14:26:28Z
institution BVB
isbn 3540626271
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007516213
oclc_num 246275175
open_access_boolean
owner DE-20
DE-739
DE-824
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-384
DE-19
DE-BY-UBM
DE-83
DE-11
DE-188
DE-706
owner_facet DE-20
DE-739
DE-824
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-384
DE-19
DE-BY-UBM
DE-83
DE-11
DE-188
DE-706
physical VIII, 132 S. graph. Darst.
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Benedetti, Riccardo
Petronio, Carlo
Branched standard spines of 3 manifolds
Lecture notes in mathematics
Three-manifolds (Topology)
Dimension 3 (DE-588)4321722-9 gnd
Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd
subject_GND (DE-588)4321722-9
(DE-588)4185712-4
title Branched standard spines of 3 manifolds
title_auth Branched standard spines of 3 manifolds
title_exact_search Branched standard spines of 3 manifolds
title_full Branched standard spines of 3 manifolds Riccardo Benedetti ; Carlo Petronio
title_fullStr Branched standard spines of 3 manifolds Riccardo Benedetti ; Carlo Petronio
title_full_unstemmed Branched standard spines of 3 manifolds Riccardo Benedetti ; Carlo Petronio
title_short Branched standard spines of 3 manifolds
title_sort branched standard spines of 3 manifolds
topic Three-manifolds (Topology)
Dimension 3 (DE-588)4321722-9 gnd
Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd
topic_facet Three-manifolds (Topology)
Dimension 3
Topologische Mannigfaltigkeit
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516213&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT benedettiriccardo branchedstandardspinesof3manifolds
AT petroniocarlo branchedstandardspinesof3manifolds