Classical and cascadic multigrid a methodical comparison

Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bornemann, Folkmar 1967- (VerfasserIn), Krause, Rolf (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik 1996
Schriftenreihe:Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1996,25
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV011030686
003 DE-604
005 20031002
007 t
008 961030s1996 |||| 00||| eng d
035 |a (OCoLC)37020132 
035 |a (DE-599)BVBBV011030686 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703 
084 |a SS 4777  |0 (DE-625)143522:  |2 rvk 
100 1 |a Bornemann, Folkmar  |d 1967-  |e Verfasser  |0 (DE-588)120096269  |4 aut 
245 1 0 |a Classical and cascadic multigrid  |b a methodical comparison  |c Folkmar A. Bornemann ; Rolf Krause 
264 1 |a Berlin  |b Konrad-Zuse-Zentrum für Informationstechnik  |c 1996 
300 |a 10 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin  |v 1996,25 
520 3 |a Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa." 
650 4 |a Finite element method 
650 4 |a Multigrid methods (Numerical analysis) 
700 1 |a Krause, Rolf  |e Verfasser  |4 aut 
810 2 |a Konrad-Zuse-Zentrum für Informationstechnik Berlin  |t Preprint SC  |v 1996,25  |w (DE-604)BV004801715  |9 1996,25 
999 |a oai:aleph.bib-bvb.de:BVB01-007386195 

Datensatz im Suchindex

_version_ 1804125521118756864
any_adam_object
author Bornemann, Folkmar 1967-
Krause, Rolf
author_GND (DE-588)120096269
author_facet Bornemann, Folkmar 1967-
Krause, Rolf
author_role aut
aut
author_sort Bornemann, Folkmar 1967-
author_variant f b fb
r k rk
building Verbundindex
bvnumber BV011030686
classification_rvk SS 4777
ctrlnum (OCoLC)37020132
(DE-599)BVBBV011030686
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02213nam a2200325 cb4500</leader><controlfield tag="001">BV011030686</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961030s1996 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37020132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011030686</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bornemann, Folkmar</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120096269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical and cascadic multigrid</subfield><subfield code="b">a methodical comparison</subfield><subfield code="c">Folkmar A. Bornemann ; Rolf Krause</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1996,25</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krause, Rolf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1996,25</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1996,25</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007386195</subfield></datafield></record></collection>
id DE-604.BV011030686
illustrated Not Illustrated
indexdate 2024-07-09T18:02:53Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007386195
oclc_num 37020132
open_access_boolean
owner DE-703
owner_facet DE-703
physical 10 S.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Konrad-Zuse-Zentrum für Informationstechnik
record_format marc
series2 Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
spelling Bornemann, Folkmar 1967- Verfasser (DE-588)120096269 aut
Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause
Berlin Konrad-Zuse-Zentrum für Informationstechnik 1996
10 S.
txt rdacontent
n rdamedia
nc rdacarrier
Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1996,25
Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa."
Finite element method
Multigrid methods (Numerical analysis)
Krause, Rolf Verfasser aut
Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1996,25 (DE-604)BV004801715 1996,25
spellingShingle Bornemann, Folkmar 1967-
Krause, Rolf
Classical and cascadic multigrid a methodical comparison
Finite element method
Multigrid methods (Numerical analysis)
title Classical and cascadic multigrid a methodical comparison
title_auth Classical and cascadic multigrid a methodical comparison
title_exact_search Classical and cascadic multigrid a methodical comparison
title_full Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause
title_fullStr Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause
title_full_unstemmed Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause
title_short Classical and cascadic multigrid
title_sort classical and cascadic multigrid a methodical comparison
title_sub a methodical comparison
topic Finite element method
Multigrid methods (Numerical analysis)
topic_facet Finite element method
Multigrid methods (Numerical analysis)
volume_link (DE-604)BV004801715
work_keys_str_mv AT bornemannfolkmar classicalandcascadicmultigridamethodicalcomparison
AT krauserolf classicalandcascadicmultigridamethodicalcomparison