Additive number theory inverse problems and the geometry of sumsets

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h[actual symbol not reproducible]2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nathanson, Melvyn B. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 1996
Schriftenreihe:Graduate texts in mathematics 165
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010997259
003 DE-604
005 19980710
007 t
008 961014s1996 d||| |||| 00||| eng d
020 |a 0387946551  |9 0-387-94655-1 
035 |a (OCoLC)34471461 
035 |a (DE-599)BVBBV010997259 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355  |a DE-12  |a DE-29T  |a DE-739  |a DE-20  |a DE-824  |a DE-706 
050 0 |a QA241 
082 0 |a 512/.73  |2 20 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
100 1 |a Nathanson, Melvyn B.  |e Verfasser  |4 aut 
245 1 0 |a Additive number theory  |b inverse problems and the geometry of sumsets  |c Melvyn B. Nathanson 
264 1 |a New York [u.a.]  |b Springer  |c 1996 
300 |a XIV, 293 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate texts in mathematics  |v 165 
520 3 |a Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h[actual symbol not reproducible]2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and attempts to describe the structure of the underlying set A. In recent years, there has been remarkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vospel and others. This volume includes their results and culminates with an elegant proof by Rusza of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression 
520 |a Inverse problems are a central topic in additive number theory. This graduate text gives a comprehensive and self-contained account of this subject. In particular, it contains complete proofs of results from exterior algebra, combinatorics, graph theory, and the geometry of numbers that are used in the proofs of the principal inverse theorems. The only prerequisites for the book are undergraduate courses in algebra, number theory, and analysis 
650 7 |a Getaltheorie  |2 gtt 
650 4 |a Nombres, Théorie des 
650 7 |a Nombres, Théorie des  |2 ram 
650 4 |a Number theory 
650 0 7 |a Zahlentheorie  |0 (DE-588)4067277-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Additive Zahlentheorie  |0 (DE-588)4141387-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Zahlentheorie  |0 (DE-588)4067277-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Additive Zahlentheorie  |0 (DE-588)4141387-8  |D s 
689 1 |5 DE-604 
830 0 |a Graduate texts in mathematics  |v 165  |w (DE-604)BV000000067  |9 165 
999 |a oai:aleph.bib-bvb.de:BVB01-007361693 

Datensatz im Suchindex

_version_ 1804125487512944640
any_adam_object
author Nathanson, Melvyn B.
author_facet Nathanson, Melvyn B.
author_role aut
author_sort Nathanson, Melvyn B.
author_variant m b n mb mbn
building Verbundindex
bvnumber BV010997259
callnumber-first Q - Science
callnumber-label QA241
callnumber-raw QA241
callnumber-search QA241
callnumber-sort QA 3241
callnumber-subject QA - Mathematics
classification_rvk SK 180
ctrlnum (OCoLC)34471461
(DE-599)BVBBV010997259
dewey-full 512/.73
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.73
dewey-search 512/.73
dewey-sort 3512 273
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02800nam a2200457 cb4500</leader><controlfield tag="001">BV010997259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980710 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961014s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387946551</subfield><subfield code="9">0-387-94655-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34471461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010997259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.73</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nathanson, Melvyn B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Additive number theory</subfield><subfield code="b">inverse problems and the geometry of sumsets</subfield><subfield code="c">Melvyn B. Nathanson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 293 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">165</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h[actual symbol not reproducible]2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and attempts to describe the structure of the underlying set A. In recent years, there has been remarkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vospel and others. This volume includes their results and culminates with an elegant proof by Rusza of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inverse problems are a central topic in additive number theory. This graduate text gives a comprehensive and self-contained account of this subject. In particular, it contains complete proofs of results from exterior algebra, combinatorics, graph theory, and the geometry of numbers that are used in the proofs of the principal inverse theorems. The only prerequisites for the book are undergraduate courses in algebra, number theory, and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Getaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Additive Zahlentheorie</subfield><subfield code="0">(DE-588)4141387-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Additive Zahlentheorie</subfield><subfield code="0">(DE-588)4141387-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">165</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">165</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007361693</subfield></datafield></record></collection>
id DE-604.BV010997259
illustrated Illustrated
indexdate 2024-07-09T18:02:20Z
institution BVB
isbn 0387946551
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007361693
oclc_num 34471461
open_access_boolean
owner DE-355
DE-BY-UBR
DE-12
DE-29T
DE-739
DE-20
DE-824
DE-706
owner_facet DE-355
DE-BY-UBR
DE-12
DE-29T
DE-739
DE-20
DE-824
DE-706
physical XIV, 293 S. graph. Darst.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer
record_format marc
series Graduate texts in mathematics
series2 Graduate texts in mathematics
spelling Nathanson, Melvyn B. Verfasser aut
Additive number theory inverse problems and the geometry of sumsets Melvyn B. Nathanson
New York [u.a.] Springer 1996
XIV, 293 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Graduate texts in mathematics 165
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h[actual symbol not reproducible]2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and attempts to describe the structure of the underlying set A. In recent years, there has been remarkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vospel and others. This volume includes their results and culminates with an elegant proof by Rusza of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression
Inverse problems are a central topic in additive number theory. This graduate text gives a comprehensive and self-contained account of this subject. In particular, it contains complete proofs of results from exterior algebra, combinatorics, graph theory, and the geometry of numbers that are used in the proofs of the principal inverse theorems. The only prerequisites for the book are undergraduate courses in algebra, number theory, and analysis
Getaltheorie gtt
Nombres, Théorie des
Nombres, Théorie des ram
Number theory
Zahlentheorie (DE-588)4067277-3 gnd rswk-swf
Additive Zahlentheorie (DE-588)4141387-8 gnd rswk-swf
Zahlentheorie (DE-588)4067277-3 s
DE-604
Additive Zahlentheorie (DE-588)4141387-8 s
Graduate texts in mathematics 165 (DE-604)BV000000067 165
spellingShingle Nathanson, Melvyn B.
Additive number theory inverse problems and the geometry of sumsets
Graduate texts in mathematics
Getaltheorie gtt
Nombres, Théorie des
Nombres, Théorie des ram
Number theory
Zahlentheorie (DE-588)4067277-3 gnd
Additive Zahlentheorie (DE-588)4141387-8 gnd
subject_GND (DE-588)4067277-3
(DE-588)4141387-8
title Additive number theory inverse problems and the geometry of sumsets
title_auth Additive number theory inverse problems and the geometry of sumsets
title_exact_search Additive number theory inverse problems and the geometry of sumsets
title_full Additive number theory inverse problems and the geometry of sumsets Melvyn B. Nathanson
title_fullStr Additive number theory inverse problems and the geometry of sumsets Melvyn B. Nathanson
title_full_unstemmed Additive number theory inverse problems and the geometry of sumsets Melvyn B. Nathanson
title_short Additive number theory
title_sort additive number theory inverse problems and the geometry of sumsets
title_sub inverse problems and the geometry of sumsets
topic Getaltheorie gtt
Nombres, Théorie des
Nombres, Théorie des ram
Number theory
Zahlentheorie (DE-588)4067277-3 gnd
Additive Zahlentheorie (DE-588)4141387-8 gnd
topic_facet Getaltheorie
Nombres, Théorie des
Number theory
Zahlentheorie
Additive Zahlentheorie
volume_link (DE-604)BV000000067
work_keys_str_mv AT nathansonmelvynb additivenumbertheoryinverseproblemsandthegeometryofsumsets