Stochastic decision predicates a scheme to represent motifs

Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a geneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Konagaya, Akihiko (VerfasserIn), Yamanishi, Kenji (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Tokyo, Japan 1991
Schriftenreihe:Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report 657
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010954338
003 DE-604
005 00000000000000.0
007 t|
008 960917s1991 xx |||| 00||| engod
035 |a (OCoLC)26293313 
035 |a (DE-599)BVBBV010954338 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Konagaya, Akihiko  |e Verfasser  |4 aut 
245 1 0 |a Stochastic decision predicates  |b a scheme to represent motifs  |c by A. Konagaya & K. Yamanishi 
264 1 |a Tokyo, Japan  |c 1991 
300 |a 7 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report  |v 657 
520 3 |a Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a genetic sequence to a set of categories, such as protein families. For the selection of stochastic decision predicates, quantative evaluation is possible from the viewpoint of predictive performance for unknown sequences as well as discrimination performance for the given genetic sequences. We employ Rissanen's Minimum Description Length (MDL) principle in order to avoid overlearning caused by the statistical fluctuation 
520 3 |a Our experimental results demonstrate that the MDL principle produces motifs with less predictive errors than the maximum likelihood method. 
650 4 |a Genetics  |x Computer programs 
700 1 |a Yamanishi, Kenji  |e Verfasser  |4 aut 
830 0 |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report  |v 657  |w (DE-604)BV010923438  |9 657 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007326703 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6123
DE-BY-TUM_katkey 765840
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010279184
_version_ 1820856858894663680
any_adam_object
author Konagaya, Akihiko
Yamanishi, Kenji
author_facet Konagaya, Akihiko
Yamanishi, Kenji
author_role aut
aut
author_sort Konagaya, Akihiko
author_variant a k ak
k y ky
building Verbundindex
bvnumber BV010954338
ctrlnum (OCoLC)26293313
(DE-599)BVBBV010954338
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01875nam a2200313 cb4500</leader><controlfield tag="001">BV010954338</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960917s1991 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26293313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010954338</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konagaya, Akihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic decision predicates</subfield><subfield code="b">a scheme to represent motifs</subfield><subfield code="c">by A. Konagaya &amp; K. Yamanishi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo, Japan</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō &lt;Tōkyō&gt;: ICOT technical report</subfield><subfield code="v">657</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a genetic sequence to a set of categories, such as protein families. For the selection of stochastic decision predicates, quantative evaluation is possible from the viewpoint of predictive performance for unknown sequences as well as discrimination performance for the given genetic sequences. We employ Rissanen's Minimum Description Length (MDL) principle in order to avoid overlearning caused by the statistical fluctuation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Our experimental results demonstrate that the MDL principle produces motifs with less predictive errors than the maximum likelihood method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamanishi, Kenji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō &lt;Tōkyō&gt;: ICOT technical report</subfield><subfield code="v">657</subfield><subfield code="w">(DE-604)BV010923438</subfield><subfield code="9">657</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007326703</subfield></datafield></record></collection>
id DE-604.BV010954338
illustrated Not Illustrated
indexdate 2024-12-23T14:17:57Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007326703
oclc_num 26293313
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 7 S.
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
record_format marc
series Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
series2 Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
spellingShingle Konagaya, Akihiko
Yamanishi, Kenji
Stochastic decision predicates a scheme to represent motifs
Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
Genetics Computer programs
title Stochastic decision predicates a scheme to represent motifs
title_auth Stochastic decision predicates a scheme to represent motifs
title_exact_search Stochastic decision predicates a scheme to represent motifs
title_full Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi
title_fullStr Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi
title_full_unstemmed Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi
title_short Stochastic decision predicates
title_sort stochastic decision predicates a scheme to represent motifs
title_sub a scheme to represent motifs
topic Genetics Computer programs
topic_facet Genetics Computer programs
volume_link (DE-604)BV010923438
work_keys_str_mv AT konagayaakihiko stochasticdecisionpredicatesaschemetorepresentmotifs
AT yamanishikenji stochasticdecisionpredicatesaschemetorepresentmotifs