Stochastic decision predicates a scheme to represent motifs
Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a geneti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Tokyo, Japan
1991
|
Schriftenreihe: | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
657 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010954338 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 960917s1991 xx |||| 00||| engod | ||
035 | |a (OCoLC)26293313 | ||
035 | |a (DE-599)BVBBV010954338 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Konagaya, Akihiko |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic decision predicates |b a scheme to represent motifs |c by A. Konagaya & K. Yamanishi |
264 | 1 | |a Tokyo, Japan |c 1991 | |
300 | |a 7 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 657 | |
520 | 3 | |a Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a genetic sequence to a set of categories, such as protein families. For the selection of stochastic decision predicates, quantative evaluation is possible from the viewpoint of predictive performance for unknown sequences as well as discrimination performance for the given genetic sequences. We employ Rissanen's Minimum Description Length (MDL) principle in order to avoid overlearning caused by the statistical fluctuation | |
520 | 3 | |a Our experimental results demonstrate that the MDL principle produces motifs with less predictive errors than the maximum likelihood method. | |
650 | 4 | |a Genetics |x Computer programs | |
700 | 1 | |a Yamanishi, Kenji |e Verfasser |4 aut | |
830 | 0 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 657 |w (DE-604)BV010923438 |9 657 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007326703 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0111 2001 B 6123 |
---|---|
DE-BY-TUM_katkey | 765840 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040010279184 |
_version_ | 1820856858894663680 |
any_adam_object | |
author | Konagaya, Akihiko Yamanishi, Kenji |
author_facet | Konagaya, Akihiko Yamanishi, Kenji |
author_role | aut aut |
author_sort | Konagaya, Akihiko |
author_variant | a k ak k y ky |
building | Verbundindex |
bvnumber | BV010954338 |
ctrlnum | (OCoLC)26293313 (DE-599)BVBBV010954338 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01875nam a2200313 cb4500</leader><controlfield tag="001">BV010954338</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960917s1991 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26293313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010954338</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konagaya, Akihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic decision predicates</subfield><subfield code="b">a scheme to represent motifs</subfield><subfield code="c">by A. Konagaya & K. Yamanishi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo, Japan</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">657</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper presents a new scheme for classifying genetic sequences, called Stochastic Decision Predicates. A stochastic decision predicate consists of Horn clauses and their probability parameters, and represents a (stochastic) motif that denotes a probabilistic mapping from a genetic sequence to a set of categories, such as protein families. For the selection of stochastic decision predicates, quantative evaluation is possible from the viewpoint of predictive performance for unknown sequences as well as discrimination performance for the given genetic sequences. We employ Rissanen's Minimum Description Length (MDL) principle in order to avoid overlearning caused by the statistical fluctuation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Our experimental results demonstrate that the MDL principle produces motifs with less predictive errors than the maximum likelihood method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamanishi, Kenji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">657</subfield><subfield code="w">(DE-604)BV010923438</subfield><subfield code="9">657</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007326703</subfield></datafield></record></collection> |
id | DE-604.BV010954338 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T14:17:57Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007326703 |
oclc_num | 26293313 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 7 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
series2 | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
spellingShingle | Konagaya, Akihiko Yamanishi, Kenji Stochastic decision predicates a scheme to represent motifs Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report Genetics Computer programs |
title | Stochastic decision predicates a scheme to represent motifs |
title_auth | Stochastic decision predicates a scheme to represent motifs |
title_exact_search | Stochastic decision predicates a scheme to represent motifs |
title_full | Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi |
title_fullStr | Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi |
title_full_unstemmed | Stochastic decision predicates a scheme to represent motifs by A. Konagaya & K. Yamanishi |
title_short | Stochastic decision predicates |
title_sort | stochastic decision predicates a scheme to represent motifs |
title_sub | a scheme to represent motifs |
topic | Genetics Computer programs |
topic_facet | Genetics Computer programs |
volume_link | (DE-604)BV010923438 |
work_keys_str_mv | AT konagayaakihiko stochasticdecisionpredicatesaschemetorepresentmotifs AT yamanishikenji stochasticdecisionpredicatesaschemetorepresentmotifs |