Quantifier elimination and cylindrical algebraic decomposition
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | German |
Veröffentlicht: |
Wien [u.a.]
Springer
1998
|
Schriftenreihe: | Texts and monographs in symbolic computation
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010951189 | ||
003 | DE-604 | ||
005 | 20100906 | ||
007 | t| | ||
008 | 960909s1998 au d||| |||| 00||| ger d | ||
016 | 7 | |a 948508817 |2 DE-101 | |
020 | |a 3211827943 |9 3-211-82794-3 | ||
035 | |a (OCoLC)35673476 | ||
035 | |a (DE-599)BVBBV010951189 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a au |c AT | ||
049 | |a DE-91G |a DE-384 |a DE-739 |a DE-29T |a DE-19 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA155.7.E4 | |
082 | 0 | |a 512 |2 21 | |
084 | |a SD 1993 |0 (DE-625)142727: |2 rvk | ||
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
084 | |a DAT 706f |2 stub | ||
084 | |a 68-06 |2 msc | ||
245 | 1 | 0 | |a Quantifier elimination and cylindrical algebraic decomposition |c B. F. Caviness ... (eds.) |
264 | 1 | |a Wien [u.a.] |b Springer |c 1998 | |
300 | |a XIX, 431 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Texts and monographs in symbolic computation | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Algebra |x Data processing |v Congresses | |
650 | 4 | |a Algorithms |v Congresses | |
650 | 4 | |a Decomposition method |x Data processing |v Congresses | |
650 | 0 | 7 | |a Quantorenelimination |0 (DE-588)4308709-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reell-abgeschlossener Körper |0 (DE-588)4225673-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1993 |z Linz |2 gnd-content | |
689 | 0 | 0 | |a Reell-abgeschlossener Körper |0 (DE-588)4225673-2 |D s |
689 | 0 | 1 | |a Quantorenelimination |0 (DE-588)4308709-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Caviness, Bob F. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007324905&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007324905 |
Datensatz im Suchindex
DE-19_call_number | 1601/ST 600 C382 |
---|---|
DE-19_location | 95 |
DE-BY-TUM_call_number | 0102 DAT 706f 2001 A 11366 |
DE-BY-TUM_katkey | 932486 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040020225750 040020387120 |
DE-BY-UBM_katkey | 2273010 |
DE-BY-UBM_media_number | 41900097310014 |
_version_ | 1823051941071028225 |
adam_text | Contents
List of Contributors xviii
Introduction 1
1 Introduction to the Method 1
2 Importance of QE and CAD Algorithms 2
3 Alternative Approaches 6
4 Practical Issues 7
Acknowledgments 7
Quantifier Elimination by Cylindrical Algebraic Decomposition
Twenty Years of Progress 8
George E. Collins
1 Introduction 8
2 Original Method 8
3 Adjacency and Clustering 10
4 Improved Projection 11
5 Partial CADs 12
6 Interactive Implementation 14
7 Solution Formula Construction 15
8 Equational Constraints 17
9 Subalgorithms 19
10 Future Improvements 21
A Decision Method for Elementary Algebra and Geometry 24
Alfred Tarski
1 Introduction 25
2 The System of Elementary Algebra 31
3 Decision Method for Elementary Algebra 38
4 Extensions to Related Systems 66
5 Notes 69
6 Supplementary Notes 81
xiv Contents
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition 85
George E. Collins
1 Introduction 85
2 Algebraic Foundations 88
3 The Main Algorithm 96
4 Algorithm Analysis 105
5 Observations 116
Super Exponential Complexity of Presburger Arithmetic 122
Michael J. Fischer and Michael O. Rabin
1 Introduction and Main Theorems 122
2 Algorithms 124
3 Method for Complexity Proofs 125
4 Proof of Theorem 3 (Real Addition) 129
5 Proof of Theorem 4 (Lengths of Proofs for Real Addition) ... 132
6 Proof of Theorems 1 and 2 (Presburger Arithmetic) 133
7 Other Results 134
Cylindrical Algebraic Decomposition I: The Basic Algorithm 136
Dennis S. Arnon, George E. Collins, and Scott McCallum
1 Introduction 136
2 Definition of Cylindrical Algebraic Decomposition 139
3 The Cylindrical Algebraic Decomposition Algorithm: Projection
Phase 140
4 The Cylindrical Algebraic Decomposition Algorithm: Base Phase 146
5 The Cylindrical Algebraic Decomposition Algorithm: Extension
Phase 147
6 An Example 148
Cylindrical Algebraic Decomposition II: An Adjacency Algorithm
for the Plane 152
Dennis S. Arnon, George E. Collins, and Scott McCallum
1 Introduction 152
2 Adjacencies in Proper Cylindrical Algebraic Decompositions . . 153
3 Determination of Section Section Adjacencies 157
4 Construction of Proper Cylindrical Algebraic Decompositions . 161
5 An Example 163
An Improvement of the Projection Operator in Cylindrical
Algebraic Decomposition 166
Hoon Hong
1 Introduction 166
2 Idea 167
3 Analysis 170
Contents xv
4 Empirical Results 170
Partial Cylindrical Algebraic Decomposition for Quantifier
Elimination 174
George E. Collins and Hoon Hong
1 Introduction 174
2 Main Idea 176
3 Partial CAD Construction Algorithm 183
4 Strategy for Cell Choice 189
5 Illustration . .• 191
6 Empirical Results 197
7 Conclusion 200
Simple Solution Formula Construction in Cylindrical Algebraic
Decomposition Based Quantifier Elimination 201
Hoon Hong
1 Introduction 201
2 Problem Statement 202
3 (Complex) Solution Formula Construction 203
4 Simplification of Solution Formulas 205
5 Experiments 210
Recent Progress on the Complexity of the Decision Problem for
the Reals 220
James Renegar
1 Some Terminology 220
2 Some Complexity Highlights 221
3 Discussion of Ideas Behind the Algorithms 224
An Improved Projection Operation for Cylindrical Algebraic
Decomposition 242
Scott McCallum
1 Introduction 242
2 Background Material 243
3 Statements of Theorems about Improved Projection Map . . . 244
4 Proof of Theorem 3 (and Lemmas) 247
5 Proof of Theorem 4 (and Lemmas) 252
6 CAD Construction Using Improved Projection 257
7 Examples 262
8 Appendix 267
Algorithms for Polynomial Real Root Isolation 269
J. R. Johnson
1 Introduction 269
2 Preliminary Mathematics 269
xvj Contents
3 Algorithms 276
4 Computing Time Analysis 284
5 Empirical Computing Times 287
Sturm Habicht Sequences, Determinants and Real Roots of
Univariate Polynomials 300
L. Gonzalez Vega, T. Redo, H. Lombardi, and M. F. Roy
1 Introduction 300
2 Algebraic Properties of Sturm Habicht Sequences 301
3 Sturm Habicht Sequences and Real Roots of Polynomials . . . 304
4 Sturm Habicht Sequences and Hankel Forms 309
5 Applications and Examples 314
Characterizations of the Macaulay Matrix and Their Algorithmic
Impact 317
Georg Hagel
1 Introduction 317
2 Notation 318
3 Definitions of the Macaulay Matrix 318
4 Extraneous Factor and First Properties of the Macaulay
Determinant 320
5 Characterization of the Macaulay Matrix 320
6 Characterization of the Macaulay Matrix, if It Is Used to
Calculate the u Resultant 322
7 Two Sorts of Homogenization 323
8 Characterization of the Matrix of the Extraneous
Factor 324
9 Conclusion 326
Computation of Variant Resultants 327
Hoon Hong and J. Rafael Sendra
1 Introduction 327
2 Problem Statement 328
3 Review of Determinant Based Method 329
4 Quotient Based Method 330
5 Modular Methods 333
6 Theoretical Computing Time Analysis 335
7 Experiments 337
A New Algorithm to Find a Point in Every Cell Defined by a
Family of Polynomials 341
Saugata Basu, Richard Pollack, and Marie Frangoise Roy
1 Introduction 341
2 Proof of the Theorem 346
Contents xvii
Local Theories and Cylindrical Decomposition 351
Daniel Richardson
1 Introduction 351
2 Infinitesimal Sectors at the Origin 352
3 Neighborhoods of Infinity 360
4 Exponential Polynomials in Two Variables 361
A Combinatorial Algorithm Solving Some Quantifier Elimination
Problems 365
Laureano Gonzalez Vega
1 Introduction 365
2 Sturm Habicht Sequence 366
3 The Algorithms 369
4 Conclusions 374
A New Approach to Quantifier Elimination for Real Algebra 376
V. Weispfenning
1 Introduction 376
2 The Quantifier Elimination Problem for the
Elementary Theory of the Reals 378
3 Counting Real Zeros Using Quadratic Forms 378
4 Comprehensive Grobner Bases 381
5 Steps of the Quantifier Elimination Method 382
6 Examples 386
References 393
Index 420
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV010951189 |
callnumber-first | Q - Science |
callnumber-label | QA155 |
callnumber-raw | QA155.7.E4 |
callnumber-search | QA155.7.E4 |
callnumber-sort | QA 3155.7 E4 |
callnumber-subject | QA - Mathematics |
classification_rvk | SD 1993 SK 200 SK 900 ST 600 |
classification_tum | DAT 706f |
ctrlnum | (OCoLC)35673476 (DE-599)BVBBV010951189 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02012nam a2200517 c 4500</leader><controlfield tag="001">BV010951189</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100906 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960909s1998 au d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">948508817</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3211827943</subfield><subfield code="9">3-211-82794-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35673476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010951189</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">au</subfield><subfield code="c">AT</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA155.7.E4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 1993</subfield><subfield code="0">(DE-625)142727:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantifier elimination and cylindrical algebraic decomposition</subfield><subfield code="c">B. F. Caviness ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 431 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and monographs in symbolic computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield><subfield code="x">Data processing</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition method</subfield><subfield code="x">Data processing</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantorenelimination</subfield><subfield code="0">(DE-588)4308709-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reell-abgeschlossener Körper</subfield><subfield code="0">(DE-588)4225673-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1993</subfield><subfield code="z">Linz</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reell-abgeschlossener Körper</subfield><subfield code="0">(DE-588)4225673-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantorenelimination</subfield><subfield code="0">(DE-588)4308709-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caviness, Bob F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007324905&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007324905</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1993 Linz gnd-content |
genre_facet | Konferenzschrift 1993 Linz |
id | DE-604.BV010951189 |
illustrated | Illustrated |
indexdate | 2025-02-03T16:44:36Z |
institution | BVB |
isbn | 3211827943 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007324905 |
oclc_num | 35673476 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-739 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-739 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 |
physical | XIX, 431 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer |
record_format | marc |
series2 | Texts and monographs in symbolic computation |
spellingShingle | Quantifier elimination and cylindrical algebraic decomposition Datenverarbeitung Algebra Data processing Congresses Algorithms Congresses Decomposition method Data processing Congresses Quantorenelimination (DE-588)4308709-7 gnd Reell-abgeschlossener Körper (DE-588)4225673-2 gnd |
subject_GND | (DE-588)4308709-7 (DE-588)4225673-2 (DE-588)1071861417 |
title | Quantifier elimination and cylindrical algebraic decomposition |
title_auth | Quantifier elimination and cylindrical algebraic decomposition |
title_exact_search | Quantifier elimination and cylindrical algebraic decomposition |
title_full | Quantifier elimination and cylindrical algebraic decomposition B. F. Caviness ... (eds.) |
title_fullStr | Quantifier elimination and cylindrical algebraic decomposition B. F. Caviness ... (eds.) |
title_full_unstemmed | Quantifier elimination and cylindrical algebraic decomposition B. F. Caviness ... (eds.) |
title_short | Quantifier elimination and cylindrical algebraic decomposition |
title_sort | quantifier elimination and cylindrical algebraic decomposition |
topic | Datenverarbeitung Algebra Data processing Congresses Algorithms Congresses Decomposition method Data processing Congresses Quantorenelimination (DE-588)4308709-7 gnd Reell-abgeschlossener Körper (DE-588)4225673-2 gnd |
topic_facet | Datenverarbeitung Algebra Data processing Congresses Algorithms Congresses Decomposition method Data processing Congresses Quantorenelimination Reell-abgeschlossener Körper Konferenzschrift 1993 Linz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007324905&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cavinessbobf quantifiereliminationandcylindricalalgebraicdecomposition |