Discrete gambling and stochastic games

The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians developed general techniques for maximizing the chances of beating a casino or winni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maitra, Ashok P. (VerfasserIn), Sudderth, William D. (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: New York [u.a.] Springer 1996
Schriftenreihe:Applications of mathematics 32
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010840597
003 DE-604
005 19970123
007 t|
008 960701s1996 gw |||| 00||| ger d
016 7 |a 947686126  |2 DE-101 
020 |a 0387946284  |c Pp. : DM 84.00  |9 0-387-94628-4 
035 |a (OCoLC)33276855 
035 |a (DE-599)BVBBV010840597 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-12  |a DE-739  |a DE-91  |a DE-703  |a DE-824  |a DE-634  |a DE-83  |a DE-29T 
050 0 |a QA271 
082 0 |a 795/.01/5193  |2 20 
084 |a SK 860  |0 (DE-625)143264:  |2 rvk 
084 |a MAT 634f  |2 stub 
084 |a MAT 920f  |2 stub 
100 1 |a Maitra, Ashok P.  |e Verfasser  |4 aut 
245 1 0 |a Discrete gambling and stochastic games  |c Ashok P. Maitra ; William D. Sudderth 
264 1 |a New York [u.a.]  |b Springer  |c 1996 
300 |a XI, 244 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Applications of mathematics  |v 32 
500 |a Literaturverz. S. 228 - 237 
520 3 |a The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians developed general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding optimal strategies are at the heart of the modern theory of stochastic control and stochastic games 
520 |a This monograph provides an introduction to the ideas of gambling theory and stochastic games. The first chapters introduce the ideas and notation of gambling theory. Chapters 3 and 4 consider "leavable" and "nonleavable" problems that form the core theory of this subject. Chapters 5, 6, and 7 cover stationary strategies, approximation results, and two-person zero-sum stochastic games, respectively. Throughout, the authors have included examples, and there are problem sets at the end of each chapter 
650 7 |a Jeux de hasard (Mathématiques)  |2 ram 
650 7 |a Speltheorie  |2 gtt 
650 7 |a Stochastische processen  |2 gtt 
650 4 |a Gambling 
650 4 |a Games of chance (Mathematics) 
650 4 |a Stochastic inequalities 
650 0 7 |a Stochastisches Spiel  |0 (DE-588)4129289-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Optimales Stoppen  |0 (DE-588)4230259-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Spieltheorie  |0 (DE-588)4056243-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Diskreter stochastischer Prozess  |0 (DE-588)4150187-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastisches Spiel  |0 (DE-588)4129289-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Diskreter stochastischer Prozess  |0 (DE-588)4150187-1  |D s 
689 1 1 |a Optimales Stoppen  |0 (DE-588)4230259-6  |D s 
689 1 2 |a Spieltheorie  |0 (DE-588)4056243-8  |D s 
689 1 |5 DE-604 
700 1 |a Sudderth, William D.  |e Verfasser  |4 aut 
830 0 |a Applications of mathematics  |v 32  |w (DE-604)BV000895226  |9 32 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007246671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007246671 

Datensatz im Suchindex

DE-BY-TUM_call_number 0001 76 A 1800
DE-BY-TUM_katkey 777279
DE-BY-TUM_location Mag
DE-BY-TUM_media_number 040001901691
_version_ 1820804925093838848
adam_text Contents 1 Introduction 1 1.1 Preview 2 1.2 Prerequisites 2 1.3 Numbering 2 2 Gambling Houses and the Conservation of Fairness 5 2.1 Introduction 5 2.2 Gambles, Gambling Houses, and Strategies 6 2.3 Stopping Times and Stop Rules 9 2.4 An Optional Sampling Theorem 11 2.5 Martingale Convergence Theorems 15 2.6 The Ordinals and Transfinite Induction 15 2.7 Uncountable State Spaces and Continuous Time 18 2.8 Problems for Chapter 2 19 3 Leavable Gambling Problems 23 3.1 The Fundamental Theorem 24 3.2 The One Day Operator and the Optimality Equation .... 26 3.3 The Utility of a Strategy 27 3.4 Some Examples 30 3.5 Optimal Strategies 42 3.6 Backward Induction: An Algorithm for U 48 3.7 Problems for Chapter 3 52 x Contents 4 Nonleavable Gambling Problems 59 4.1 Introduction 59 4.2 Understanding u(cr) 60 4.3 A Characterization of V 68 4.4 The Optimality Equation for V 69 4.5 Proving Optimality 70 4.6 Some Examples 70 4.7 Optimal Strategies 75 4.8 Another Characterization of V 78 4.9 An Algorithm for V 82 4.10 Problems for Chapter 4 84 5 Stationary Families of Strategies 89 5.1 Introduction 89 5.2 Comparing Strategies 90 5.3 Finite Gambling Problems 94 5.4 Nonnegative Stop or Go Problems 96 5.5 Leavable Houses 101 5.6 An Example of Blackwell and Ramakrishnan 106 5.7 Markov Families of Strategies 109 5.8 Stationary Plans in Dynamic Programming 109 5.9 Problems for Chapter 5 110 6 Approximation Theorems 113 6.1 Introduction 113 6.2 Analytic Sets 114 6.3 Optimality Equations 124 6.4 Special Cases of Theorem 1.2 128 6.5 The Going Up Property of M 139 6.6 Dynamic Capacities and the Proof of Theorem 1.2 144 6.7 Approximating Functions 150 6.8 Composition Closure and Saturated House 158 6.9 Problems for Chapter 6 165 7 Stochastic Games 171 7.1 Introduction 171 7.2 Two Person, Zero Sum Games 172 7.3 The Dynamics of Stochastic Games 176 7.4 Stochastic Games with lim sup Payoff 179 7.5 Other Payoff Functions 180 7.6 The One Day Operator 181 7.7 Leavable Games 184 7.8 Families of Optimal Strategies for Leavable Games 189 7.9 Examples of Leavable Games 191 7.10 A Modification of Leavable Games and the Operator T . . . 196 Contents xi 7.11 An Algorithm for the Value of a Nonleavable Game 198 7.12 The Optimality Equation for V 201 7.13 Good Strategies in Nonleavable Games 203 7.14 Win, Lose, or Draw 207 7.15 Recursive Matrix Games 210 7.16 Games of Survival 212 7.17 The Big Match 216 7.18 Problems for Chapter 7 221 References 227 Symbol Index 239 Index 241
any_adam_object 1
author Maitra, Ashok P.
Sudderth, William D.
author_facet Maitra, Ashok P.
Sudderth, William D.
author_role aut
aut
author_sort Maitra, Ashok P.
author_variant a p m ap apm
w d s wd wds
building Verbundindex
bvnumber BV010840597
callnumber-first Q - Science
callnumber-label QA271
callnumber-raw QA271
callnumber-search QA271
callnumber-sort QA 3271
callnumber-subject QA - Mathematics
classification_rvk SK 860
classification_tum MAT 634f
MAT 920f
ctrlnum (OCoLC)33276855
(DE-599)BVBBV010840597
dewey-full 795/.01/5193
dewey-hundreds 700 - The arts
dewey-ones 795 - Games of chance
dewey-raw 795/.01/5193
dewey-search 795/.01/5193
dewey-sort 3795 11 45193
dewey-tens 790 - Recreational and performing arts
discipline Sport
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03278nam a2200613 cb4500</leader><controlfield tag="001">BV010840597</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970123 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960701s1996 gw |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">947686126</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387946284</subfield><subfield code="c">Pp. : DM 84.00</subfield><subfield code="9">0-387-94628-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33276855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010840597</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA271</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">795/.01/5193</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 634f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 920f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maitra, Ashok P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete gambling and stochastic games</subfield><subfield code="c">Ashok P. Maitra ; William D. Sudderth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 244 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applications of mathematics</subfield><subfield code="v">32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 228 - 237</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians developed general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding optimal strategies are at the heart of the modern theory of stochastic control and stochastic games</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph provides an introduction to the ideas of gambling theory and stochastic games. The first chapters introduce the ideas and notation of gambling theory. Chapters 3 and 4 consider "leavable" and "nonleavable" problems that form the core theory of this subject. Chapters 5, 6, and 7 cover stationary strategies, approximation results, and two-person zero-sum stochastic games, respectively. Throughout, the authors have included examples, and there are problem sets at the end of each chapter</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jeux de hasard (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Speltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische processen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gambling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Games of chance (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic inequalities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Spiel</subfield><subfield code="0">(DE-588)4129289-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimales Stoppen</subfield><subfield code="0">(DE-588)4230259-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter stochastischer Prozess</subfield><subfield code="0">(DE-588)4150187-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Spiel</subfield><subfield code="0">(DE-588)4129289-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diskreter stochastischer Prozess</subfield><subfield code="0">(DE-588)4150187-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Optimales Stoppen</subfield><subfield code="0">(DE-588)4230259-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sudderth, William D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applications of mathematics</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV000895226</subfield><subfield code="9">32</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007246671&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007246671</subfield></datafield></record></collection>
id DE-604.BV010840597
illustrated Not Illustrated
indexdate 2024-12-23T14:13:59Z
institution BVB
isbn 0387946284
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007246671
oclc_num 33276855
open_access_boolean
owner DE-12
DE-739
DE-91
DE-BY-TUM
DE-703
DE-824
DE-634
DE-83
DE-29T
owner_facet DE-12
DE-739
DE-91
DE-BY-TUM
DE-703
DE-824
DE-634
DE-83
DE-29T
physical XI, 244 S.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer
record_format marc
series Applications of mathematics
series2 Applications of mathematics
spellingShingle Maitra, Ashok P.
Sudderth, William D.
Discrete gambling and stochastic games
Applications of mathematics
Jeux de hasard (Mathématiques) ram
Speltheorie gtt
Stochastische processen gtt
Gambling
Games of chance (Mathematics)
Stochastic inequalities
Stochastisches Spiel (DE-588)4129289-3 gnd
Optimales Stoppen (DE-588)4230259-6 gnd
Spieltheorie (DE-588)4056243-8 gnd
Diskreter stochastischer Prozess (DE-588)4150187-1 gnd
subject_GND (DE-588)4129289-3
(DE-588)4230259-6
(DE-588)4056243-8
(DE-588)4150187-1
title Discrete gambling and stochastic games
title_auth Discrete gambling and stochastic games
title_exact_search Discrete gambling and stochastic games
title_full Discrete gambling and stochastic games Ashok P. Maitra ; William D. Sudderth
title_fullStr Discrete gambling and stochastic games Ashok P. Maitra ; William D. Sudderth
title_full_unstemmed Discrete gambling and stochastic games Ashok P. Maitra ; William D. Sudderth
title_short Discrete gambling and stochastic games
title_sort discrete gambling and stochastic games
topic Jeux de hasard (Mathématiques) ram
Speltheorie gtt
Stochastische processen gtt
Gambling
Games of chance (Mathematics)
Stochastic inequalities
Stochastisches Spiel (DE-588)4129289-3 gnd
Optimales Stoppen (DE-588)4230259-6 gnd
Spieltheorie (DE-588)4056243-8 gnd
Diskreter stochastischer Prozess (DE-588)4150187-1 gnd
topic_facet Jeux de hasard (Mathématiques)
Speltheorie
Stochastische processen
Gambling
Games of chance (Mathematics)
Stochastic inequalities
Stochastisches Spiel
Optimales Stoppen
Spieltheorie
Diskreter stochastischer Prozess
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007246671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000895226
work_keys_str_mv AT maitraashokp discretegamblingandstochasticgames
AT sudderthwilliamd discretegamblingandstochasticgames