Stochastic modeling of scientific data

This text combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models, in a clear, thoughtful and succinct manner. The main distinguishing feature of this work is that, in addition to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Guttorp, Peter (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London [u.a.] Chapman & Hall 1995
Ausgabe:1. ed.
Schriftenreihe:Stochastic modeling series
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV010806564
003 DE-604
005 20010411
007 t|
008 960620s1995 xx d||| |||| 00||| eng d
020 |a 0412992817  |9 0-412-99281-7 
035 |a (OCoLC)33164308 
035 |a (DE-599)BVBBV010806564 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-384  |a DE-19  |a DE-20  |a DE-29  |a DE-91G  |a DE-824  |a DE-706  |a DE-11  |a DE-188 
050 0 |a QA274 
082 0 |a 519.2  |2 20 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a SK 850  |0 (DE-625)143263:  |2 rvk 
084 |a MAT 620f  |2 stub 
100 1 |a Guttorp, Peter  |e Verfasser  |4 aut 
245 1 0 |a Stochastic modeling of scientific data  |c Peter Guttorp 
250 |a 1. ed. 
264 1 |a London [u.a.]  |b Chapman & Hall  |c 1995 
300 |a XII, 372 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Stochastic modeling series 
520 3 |a This text combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models, in a clear, thoughtful and succinct manner. The main distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analysed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward - backward algorithm for analysing hidden Markov models is presented 
520 |a The numerous examples and exercises drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics, make this an ideal textbook for researchers, neurophysiology and physics, make this an ideal textbook for researchers, lecturers and graduate students studying statistics and probability, especially applied probability and stochastic processes 
650 7 |a Processos estocasticos  |2 larpcal 
650 7 |a Processus statistiques - Modèles mathématiques  |2 ram 
650 7 |a Stochastische modellen  |2 gtt 
650 4 |a Mathematisches Modell 
650 4 |a Markov processes 
650 4 |a Stochastic processes  |x Mathematical models 
650 0 7 |a Stochastisches Modell  |0 (DE-588)4057633-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistisches Modell  |0 (DE-588)4121722-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Statistisches Modell  |0 (DE-588)4121722-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Stochastisches Modell  |0 (DE-588)4057633-4  |D s 
689 1 |5 DE-188 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007219118&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007219118 

Datensatz im Suchindex

DE-19_call_number 1006/SK 850 G985
DE-19_location 70
DE-BY-TUM_call_number 0102 MAT 620f 2001 A 16571
DE-BY-TUM_katkey 814361
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020359308
DE-BY-UBM_katkey 1544120
DE-BY-UBM_media_number 41621471750012
_version_ 1823051220086947840
adam_text Contents Preface x CHAPTER 1 Introduction 1 1.1. Randomness 1 1.2. Stochastic processes 5 1.3. Purposes of stochastic models 9 1.4. Overview 12 1.5. Bibliographic remarks 13 1.6. Exercises 14 CHAPTER 2 Discrete time Markov chains 16 2.1. Precipitation at Snoqualmie Falls 16 2.2. The marginal distribution 21 2.3. Classification of states 23 2.4. Stationary distribution 35 2.5. Long term behavior 43 2.6. Markov chain Monte Carlo methods 52 2.7. Likelihood theory for Markov chains 58 2.8. Higher order chains 70 2.9. Chain dependent models 74 2.10. Random walks and harmonic analysis 82 2.11. Bienayme Galton Watson branching processes 90 2.12. Hidden Markov models 103 2.13. Bibliographic remarks 112 2.14. Exercises 114 CHAPTER 3 Continuous time Markov chains 125 3.1. The soft component of cosmic radiation 125 3.2. The pure birth process 128 viii Contents 3.3. The Kolmogorov equations 133 3.4. A general construction 140 3.5. Queueing systems 147 3.6. An improved model for cosmic radiation 151 3.7. Statistical inference for continuous time Markov chains 153 3.8. Modeling neural activity 164 3.9. Blood formation in cats 172 3.10. Bibliographic remarks 181 3.11. Exercises 181 CHAPTER 4. Markov random fields 189 4.1. The Ising model of ferromagnetism 189 4.2. Markov random fields 191 4.3. Phase transitions in Markov random fields 196 4.4. Likelihood analysis of the Ising model 200 4.5. Reconstruction of astronomical images 203 4.6. Image analysis and pedigrees 209 4.7. Bibliographic remarks 219 4.8. Exercises 219 CHAPTER 5. Point processes 227 5.1. A model of traffic patterns 227 5.2. General concepts 230 5.3. Estimating second order parameters for stationary point processes 238 5.4. Relationships between processes 241 5.5. Modeling the complete intensity 245 5.6. Marked point processes 250 5.7. Spatial point processes 260 5.8. Bibliographic remarks 268 5.9. Exercises 270 CHAPTER 6. Brownian motion and diffusion 276 6.1. Brownian motion 276 6.2. Second order processes 280 6.3. The Brownian motion process 283 6.4. A more realistic model of Brownian motion 289 6.5. Diffusion equations 294 6.6. Likelihood inference for stochastic differential equations 301 6.7. The Wright Fisher model of diploid populations 305 Contents ix 6.8. Bibliographic remarks 311 6.9. Exercises 311 APPENDIX A. Some statistical theory 318 A.I. Multinomial likelihood 318 A.2. The parametric case 319 A.3. Likelihood ratio tests 320 A.4. Sufficiency 322 APPENDIX B. Linear difference equations with constant coefficients 325 B.I. The forward shift operator 325 B.2. Homogeneous difference equations 325 B.3. Non homogeneous difference equations 327 APPENDIX C. Some theory of partial differential equations 329 C.I. The method of auxiliary equations 329 C.2. Some applications 330 References 332 Index of results 349 Applications and examples 351 Index of notation 354 Index of terms 359 Data sets 371
any_adam_object 1
author Guttorp, Peter
author_facet Guttorp, Peter
author_role aut
author_sort Guttorp, Peter
author_variant p g pg
building Verbundindex
bvnumber BV010806564
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274
callnumber-search QA274
callnumber-sort QA 3274
callnumber-subject QA - Mathematics
classification_rvk SK 820
SK 850
classification_tum MAT 620f
ctrlnum (OCoLC)33164308
(DE-599)BVBBV010806564
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
edition 1. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV010806564</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010411</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960620s1995 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0412992817</subfield><subfield code="9">0-412-99281-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33164308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010806564</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guttorp, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic modeling of scientific data</subfield><subfield code="c">Peter Guttorp</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Chapman &amp; Hall</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 372 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Stochastic modeling series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This text combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models, in a clear, thoughtful and succinct manner. The main distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analysed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward - backward algorithm for analysing hidden Markov models is presented</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The numerous examples and exercises drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics, make this an ideal textbook for researchers, neurophysiology and physics, make this an ideal textbook for researchers, lecturers and graduate students studying statistics and probability, especially applied probability and stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processos estocasticos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processus statistiques - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007219118&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007219118</subfield></datafield></record></collection>
id DE-604.BV010806564
illustrated Illustrated
indexdate 2025-02-03T16:34:53Z
institution BVB
isbn 0412992817
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007219118
oclc_num 33164308
open_access_boolean
owner DE-384
DE-19
DE-BY-UBM
DE-20
DE-29
DE-91G
DE-BY-TUM
DE-824
DE-706
DE-11
DE-188
owner_facet DE-384
DE-19
DE-BY-UBM
DE-20
DE-29
DE-91G
DE-BY-TUM
DE-824
DE-706
DE-11
DE-188
physical XII, 372 S. graph. Darst.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Chapman & Hall
record_format marc
series2 Stochastic modeling series
spellingShingle Guttorp, Peter
Stochastic modeling of scientific data
Processos estocasticos larpcal
Processus statistiques - Modèles mathématiques ram
Stochastische modellen gtt
Mathematisches Modell
Markov processes
Stochastic processes Mathematical models
Stochastisches Modell (DE-588)4057633-4 gnd
Statistisches Modell (DE-588)4121722-6 gnd
subject_GND (DE-588)4057633-4
(DE-588)4121722-6
title Stochastic modeling of scientific data
title_auth Stochastic modeling of scientific data
title_exact_search Stochastic modeling of scientific data
title_full Stochastic modeling of scientific data Peter Guttorp
title_fullStr Stochastic modeling of scientific data Peter Guttorp
title_full_unstemmed Stochastic modeling of scientific data Peter Guttorp
title_short Stochastic modeling of scientific data
title_sort stochastic modeling of scientific data
topic Processos estocasticos larpcal
Processus statistiques - Modèles mathématiques ram
Stochastische modellen gtt
Mathematisches Modell
Markov processes
Stochastic processes Mathematical models
Stochastisches Modell (DE-588)4057633-4 gnd
Statistisches Modell (DE-588)4121722-6 gnd
topic_facet Processos estocasticos
Processus statistiques - Modèles mathématiques
Stochastische modellen
Mathematisches Modell
Markov processes
Stochastic processes Mathematical models
Stochastisches Modell
Statistisches Modell
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007219118&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT guttorppeter stochasticmodelingofscientificdata