Linear algebra over small finite fields on parallel machines

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Essen Fachbereich Math. der Univ. GH 1995
Schriftenreihe:Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen 23
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010711304
003 DE-604
005 20070222
007 t|
008 960418s1995 xx |||| 00||| eng d
016 7 |a 948262991  |2 DE-101 
035 |a (OCoLC)637096849 
035 |a (DE-599)BVBBV010711304 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355  |a DE-12  |a DE-703  |a DE-91G  |a DE-384  |a DE-29T 
084 |a SI 713  |0 (DE-625)143180:  |2 rvk 
245 1 0 |a Linear algebra over small finite fields on parallel machines  |c Peter Fleischmann ... 
264 1 |a Essen  |b Fachbereich Math. der Univ. GH  |c 1995 
300 |a VI, 113 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen  |v 23 
650 0 7 |a Galois-Feld  |0 (DE-588)4155896-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineare Algebra  |0 (DE-588)4035811-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Paralleler Algorithmus  |0 (DE-588)4193615-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Galois-Feld  |0 (DE-588)4155896-0  |D s 
689 0 1 |a Lineare Algebra  |0 (DE-588)4035811-2  |D s 
689 0 2 |a Paralleler Algorithmus  |0 (DE-588)4193615-2  |D s 
689 0 |5 DE-604 
700 1 |a Fleischmann, Peter  |e Sonstige  |4 oth 
830 0 |a Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen  |v 23  |w (DE-604)BV010927521  |9 23 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007151544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-007151544 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6035
DE-BY-TUM_katkey 773507
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020458648
DE-BY-UBR_call_number 80/SI 713
DE-BY-UBR_katkey 2225332
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069041803326
_version_ 1822733498647052288
adam_text Contents Preface i Contents iii List of Symbols v I Parallel linear algebra 1 1 Parallel Gaussian Elimination over Small Finite Fields 3 1.1 Introduction 3 1.2 Implementation of field elements 4 1.2.1 Implementation of prime fields 4 1.2.2 Implementation of arbitrary fields 8 1.2.3 The concept of preeoinpiitation 9 1 .3 Gaussian elimination 10 1.3.1 Computing the null space 10 1.3.2 Searching foi pivot elements 11 1.3.3 Performing row operations by column operations 13 1.3.4 Matrix partition 15 1.3.5 Eliminating multiple rows in a single turn 16 1.4 Implementation 21 1.4.1 Scaling behaviour 21 1.4.2 Implementation of broadcasts 25 1.4.3 Conclusions 27 2 Constructing invariant subspaces 29 2.1 Introduction 29 2.2 The standard approach 29 2.3 Storing subspaces full versus semi echelon 30 2.4 The parallel algorithm ... 32 3 Norton s Irreducibility Criterion 35 3.1 Application 36 iv Contents II Diagonalisation algorithms 37 4 Diagonalising and Triangulising Matrices over Rings 39 4.1 Introduction 39 4.2 Greatest common divisor computation 39 4.2.1 Smith s GCD computation 40 4.2.2 Blankcnship s GCD computation 41 4.2.3 Approximate running times for polynomial domains .... 45 4.3 Matrix triangulisntion 49 4.3.1 Running times and coefficient growth 53 4.4 Matrix diagonalisation 53 4.4.1 Running times and coefficient growth 55 4.5 Parallel implementations 55 4.5.1 Data structures 56 4.5.2 Parallel versions of Blankenship s HNF and LHNF algorithm 57 4.5.3 Running times 58 5 Diagonalizing Characteristic Matrices 61 5.1 Introduction 61 5.2 The Reduction Theorem 62 5.3 The Diagonalizing Algorithm 66 5.4 The Invariant Factors 75 5.5 The Rational Canonical Form 85 5.6 Implementation Notes 87 5.7 Running Times 92 III Factorization algorithms 97 6 Implementation of Polynomial Factorization Algorithms 99 6.1 Introduction 99 6.2 Basic concepts 100 6.2.1 Equivalent subspaces 100 6.2.2 Extracting factors and randomization 101 6.2.3 Berlekamp s and Niederreiter s Subspaces 102 6.3 The implementations 104 6.4 Concluding remarks 106 Contact Information 109 Bibliography 111
any_adam_object 1
building Verbundindex
bvnumber BV010711304
classification_rvk SI 713
ctrlnum (OCoLC)637096849
(DE-599)BVBBV010711304
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01653nam a2200385 cb4500</leader><controlfield tag="001">BV010711304</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070222 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960418s1995 xx |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">948262991</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)637096849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010711304</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 713</subfield><subfield code="0">(DE-625)143180:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra over small finite fields on parallel machines</subfield><subfield code="c">Peter Fleischmann ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Essen</subfield><subfield code="b">Fachbereich Math. der Univ. GH</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 113 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen</subfield><subfield code="v">23</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Paralleler Algorithmus</subfield><subfield code="0">(DE-588)4193615-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Paralleler Algorithmus</subfield><subfield code="0">(DE-588)4193615-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fleischmann, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen</subfield><subfield code="v">23</subfield><subfield code="w">(DE-604)BV010927521</subfield><subfield code="9">23</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007151544&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007151544</subfield></datafield></record></collection>
id DE-604.BV010711304
illustrated Not Illustrated
indexdate 2024-12-23T14:08:53Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007151544
oclc_num 637096849
open_access_boolean
owner DE-355
DE-BY-UBR
DE-12
DE-703
DE-91G
DE-BY-TUM
DE-384
DE-29T
owner_facet DE-355
DE-BY-UBR
DE-12
DE-703
DE-91G
DE-BY-TUM
DE-384
DE-29T
physical VI, 113 S.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Fachbereich Math. der Univ. GH
record_format marc
series Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen
series2 Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen
spellingShingle Linear algebra over small finite fields on parallel machines
Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen
Galois-Feld (DE-588)4155896-0 gnd
Lineare Algebra (DE-588)4035811-2 gnd
Paralleler Algorithmus (DE-588)4193615-2 gnd
subject_GND (DE-588)4155896-0
(DE-588)4035811-2
(DE-588)4193615-2
title Linear algebra over small finite fields on parallel machines
title_auth Linear algebra over small finite fields on parallel machines
title_exact_search Linear algebra over small finite fields on parallel machines
title_full Linear algebra over small finite fields on parallel machines Peter Fleischmann ...
title_fullStr Linear algebra over small finite fields on parallel machines Peter Fleischmann ...
title_full_unstemmed Linear algebra over small finite fields on parallel machines Peter Fleischmann ...
title_short Linear algebra over small finite fields on parallel machines
title_sort linear algebra over small finite fields on parallel machines
topic Galois-Feld (DE-588)4155896-0 gnd
Lineare Algebra (DE-588)4035811-2 gnd
Paralleler Algorithmus (DE-588)4193615-2 gnd
topic_facet Galois-Feld
Lineare Algebra
Paralleler Algorithmus
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007151544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV010927521
work_keys_str_mv AT fleischmannpeter linearalgebraoversmallfinitefieldsonparallelmachines