Variational calculus and optimal control optimization with elementary convexity

"This book supplies a broad-based introduction to variational methods for formulating and solving problems in mathematics and the applied sciences. It refines and extends the author's earlier text on variational calculus and a supplement on optimal control. It is the only current introduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Vorheriger Titel:Troutman, John L. Variational calculus with elementary convexity
1. Verfasser: Troutman, John L. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 1996
Ausgabe:2. ed.
Schriftenreihe:Undergraduate texts in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV010617259
003 DE-604
005 20231017
007 t
008 960205s1996 gw d||| |||| 00||| eng d
016 7 |a 946513449  |2 DE-101 
020 |a 0387945113  |c Pp. : DM 84.00  |9 0-387-94511-3 
020 |a 9781461268871  |c pbk  |9 978-1-4612-6887-1 
035 |a (OCoLC)32236221 
035 |a (DE-599)BVBBV010617259 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-703  |a DE-91  |a DE-91G  |a DE-898  |a DE-355  |a DE-384  |a DE-824  |a DE-29T  |a DE-521  |a DE-634  |a DE-11  |a DE-188  |a DE-19 
050 0 |a QA315.T724 1996 
082 0 |a 515/.64  |2 20 
082 0 |a 515/.64 20 
084 |a SK 660  |0 (DE-625)143251:  |2 rvk 
084 |a SK 870  |0 (DE-625)143265:  |2 rvk 
084 |a MAT 525f  |2 stub 
084 |a 27  |2 sdnb 
084 |a MAT 490f  |2 stub 
100 1 |a Troutman, John L.  |e Verfasser  |4 aut 
245 1 0 |a Variational calculus and optimal control  |b optimization with elementary convexity  |c John L. Troutman 
250 |a 2. ed. 
264 1 |a New York [u.a.]  |b Springer  |c 1996 
300 |a XV, 461 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Undergraduate texts in mathematics 
520 1 |a "This book supplies a broad-based introduction to variational methods for formulating and solving problems in mathematics and the applied sciences. It refines and extends the author's earlier text on variational calculus and a supplement on optimal control. It is the only current introductory text that uses elementary partial convexity of differentiable functions to characterize directly the solutions of some minimization problems before exploring necessary conditions for optimality or field theory methods of sufficiency. Through effective notation, it combines rudiments of analysis in (normed) linear spaces with simpler aspects of convexity to offer a multilevel strategy for handling such problems. It also employs convexity considerations to broaden the discussion of Hamilton's principle in mechanics and to introduce Pontjragin's principle in optimal control. It is mathematically self-contained but it uses applications from many disciplines to provide a wealth of examples and exercises. The book is accessible to upper-level undergraduates and should help its user understand theories of increasing importance in a society that values optimal performance."--BOOK JACKET. 
650 7 |a Convexe ruimten  |2 gtt 
650 7 |a Optimaliseren  |2 gtt 
650 7 |a Variatierekening  |2 gtt 
650 4 |a Calculus of variations 
650 4 |a Control theory 
650 4 |a Mathematical optimization 
650 4 |a Convex functions 
650 0 7 |a Konvexe Optimierung  |0 (DE-588)4137027-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Variationsrechnung  |0 (DE-588)4062355-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Funktion  |0 (DE-588)4139679-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Optimale Kontrolle  |0 (DE-588)4121428-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Variationsrechnung  |0 (DE-588)4062355-5  |D s 
689 0 1 |a Konvexe Funktion  |0 (DE-588)4139679-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Optimale Kontrolle  |0 (DE-588)4121428-6  |D s 
689 1 1 |a Konvexe Funktion  |0 (DE-588)4139679-0  |D s 
689 1 |5 DE-604 
689 2 0 |a Variationsrechnung  |0 (DE-588)4062355-5  |D s 
689 2 1 |a Konvexe Optimierung  |0 (DE-588)4137027-2  |D s 
689 2 |5 DE-604 
689 3 0 |a Optimale Kontrolle  |0 (DE-588)4121428-6  |D s 
689 3 1 |a Konvexe Optimierung  |0 (DE-588)4137027-2  |D s 
689 3 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4612-0737-5 
780 0 0 |i Früher u.d.T.  |a Troutman, John L.  |t Variational calculus with elementary convexity  |w (DE-604)BV002098294 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007083225&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-007083225 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/MAT 490f 2002 A 938(2)
0001/96 A 1583
0102/MAT 490f 2001 A 29661(2)+2
0102/MAT 490f 2001 A 29661(2)
DE-BY-TUM_katkey 763530
DE-BY-TUM_media_number 040020470008
040020659016
040001039492
040010581329
_version_ 1816711744098140160
adam_text Contents Preface vii CHAPTER 0 Review of Optimization in Ud 1 Problems 7 PART ONE BASIC THEORY 11 CHAPTER 1 Standard Optimization Problems 13 1.1. Geodesic Problems 13 (a) Geodesies in M* 14 (b) Geodesies on a Sphere 15 (c) Other Geodesic Problems 17 1.2. Time of Transit Problems 17 (a) The Brachistochrone 17 (b) Steering and Control Problems 20 1.3. Isoperimetric Problems 21 1.4. Surface Area Problems 24 (a) Minimal Surface of Revolution 24 (b) Minimal Area Problem 25 (c) Plateau s Problem 26 1.5. Summary: Plan of the Text 26 Notation: Uses and Abuses 29 Problems 31 xi xii Contents CHAPTER 2 Linear Spaces and Gateaux Variations 36 2.1. Real Linear Spaces 36 2.2. Functions from Linear Spaces 38 2.3. Fundamentals of Optimization 39 Constraints 41 Rotating Fluid Column 42 2.4. The Gateaux Variations 45 Problems 50 CHAPTER 3 Minimization of Convex Functions 53 3.1. Convex Functions 54 3.2. Convex Integral Functions 56 Free End Point Problems 60 3.3. [Strongly] Convex Functions 61 3.4. Applications 65 (a) Geodesies on a Cylinder 65 (b) A Brachistochrone 66 (c) A Profile of Minimum Drag 69 (d) An Economics Problem 72 (e) Minimal Area Problem 74 3.5. Minimization with Convex Constraints 76 The Hanging Cable 78 Optimal Performance 81 3.6. Summary: Minimizing Procedures 83 Problems 84 CHAPTER 4 The Lemmas of Lagrange and Du Bois Reymond 97 Problems 101 CHAPTER 5 Local Extrema in Normed Linear Spaces 103 5.1. Norms for Linear Spaces 103 5.2. Normed Linear Spaces: Convergence and Compactness 106 5.3. Continuity 108 5.4. (Local) Extremal Points 114 5.5. Necessary Conditions: Admissible Directions 115 5.6*. Affine Approximation: The Frechet Derivative 120 Tangency 127 5.7. Extrema with Constraints: Lagrangian Multipliers 129 Problems 139 CHAPTER 6 The Euler Lagrange Equations 145 6.1. The First Equation: Stationary Functions 147 6.2. Special Cases of the First Equation 148 Contents xiii (a) When/ = /(z) 149 (b) When/ = /(*, z) 149 (c) When f = f(y,z) 150 6.3. The Second Equation 153 6.4. Variable End Point Problems: Natural Boundary Conditions 156 Jakob Bernoulli s Brachistochrone 156 Transversal Conditions* 157 6.5. Integral Constraints: Lagrangian Multipliers 160 6.6. Integrals Involving Higher Derivatives 162 Buckling of a Column under Compressive Load 164 6.7. Vector Valued Stationary Functions 169 The Isoperimetric Problem 171 Lagrangian Constraints* 173 Geodesies on a Surface 177 6.8*. Invariance of Stationarity 178 6.9. Multidimensional Integrals 181 Minimal Area Problem 184 Natural Boundary Conditions 185 Problems 186 PART TWO ADVANCED TOPICS 195 CHAPTER 7 Piecewise C1 Extremal Functions 197 7.1. Piecewise C1 Functions 198 (a) Smoothing 199 (b) Norms for C1 201 7.2. Integral Functions on C1 202 7.3. Extremals in C1 [a, by. The Weierstrass Erdmann Corner Conditions 204 A Sturm Liouville Problem 209 7.4. Minimization Through Convexity 211 Internal Constraints 212 7.5. Piecewise C1 Vector Valued Extremals 215 Minimal Surface of Revolution 217 Hilbert s Differentiability Criterion* 220 7.6*. Conditions Necessary for a Local Minimum 221 (a) The Weierstrass Condition 222 (b) The Legendre Condition 224 Bolza s Problem 225 Problems 227 CHAPTER 8 Variational Principles in Mechanics 234 8.1. The Action Integral 235 8.2. Hamilton s Principle: Generalized Coordinates 236 Bernoulli s Principle of Static Equilibrium 239 xiv Contents 8.3. The Total Energy 240 Spring Mass Pendulum System 241 8.4. The Canonical Equations 243 8.5. Integrals of Motion in Special Cases 247 Jacobi s Principle of Least Action 248 Symmetry and Invariance 250 8.6. Parametric Equations of Motion 250 8.7*. The Hamilton Jacobi Equation 251 8.8. Saddle Functions and Convexity; Complementary Inequalities 254 The Cycloid Is the Brachistochrone 257 Dido s Problem 258 8.9. Continuous Media 260 (a) Taut String 260 The Nonuniform String 264 (b) Stretched Membrane 266 Static Equilibrium of (Nonplanar) Membrane 269 Problems 270 CHAPTER 9* Sufficient Conditions for a Minimum 282 9.1. The Weierstrass Method 283 9.2. [Strict] Convexity of f(x, Y, Z) 286 9.3. Fields 288 Exact Fields and the Hamilton Jacobi Equation* 293 9.4. Hilbert s Invariant Integral 294 The Brachistochrone* 296 Variable End Point Problems 297 9.5. Minimization with Constraints 300 The Wirtinger Inequality 304 9.6*. Central Fields 308 Smooth Minimal Surface of Revolution 312 9.7. Construction of Central Fields with Given Trajectory: The Jacobi Condition 314 9.8. Sufficient Conditions for a Local Minimum 319 (a) Pointwise Results 320 Hamilton s Principle 320 (b) Trajectory Results 321 9.9*. Necessity of the Jacobi Condition 322 9.10. Concluding Remarks 327 Problems 329 PART THREE OPTIMAL CONTROL 339 CHAPTER 10* Control Problems and Sufficiency Considerations 341 10.1. Mathematical Formulation and Terminology 342 Contents xv 10.2. Sample Problems 344 (a) Some Easy Problems 345 (b) A Bolza Problem 347 (c) Optimal Time of Transit 348 (d) A Rocket Propulsion Problem 350 (e) A Resource Allocation Problem 352 (f) Excitation of an Oscillator 355 (g) Time Optimal Solution by Steepest Descent 357 10.3. Sufficient Conditions Through Convexity 359 Linear State Quadratic Performance Problem 361 10.4. Separate Convexity and the Minimum Principle 365 Problems 372 CHAPTER 11 Necessary Conditions for Optimality 378 11.1. Necessity of the Minimum Principle 378 (a) Effects of Control Variations 380 (b) Autonomous Fixed Interval Problems 384 Oscillator Energy Problem 389 (c) General Control Problems 391 11.2. Linear Time Optimal Problems 397 Problem Statement 398 A Free Space Docking Problem 401 11.3. General Lagrangian Constraints 404 (a) Control Sets Described by Lagrangian Inequalities 405 (b)* Variational Problems with Lagrangian Constraints 406 (c) Extensions 410 Problems 413 Appendix A.0. Compact Sets in Rd 419 A.I. The Intermediate and Mean Value Theorems 421 A.2. The Fundamental Theorem of Calculus 423 A.3. Partial Integrals: Leibniz Formula 425 A.4. An Open Mapping Theorem 427 A. 5. Families of Solutions to a System of Differential Equations 429 A.6. The Rayleigh Ratio 435 A.7*. Linear Functionals and Tangent Cones in Rd 441 Bibliography 445 Historical References 450 Answers to Selected Problems 452 Index 457
any_adam_object 1
author Troutman, John L.
author_facet Troutman, John L.
author_role aut
author_sort Troutman, John L.
author_variant j l t jl jlt
building Verbundindex
bvnumber BV010617259
callnumber-first Q - Science
callnumber-label QA315
callnumber-raw QA315.T724 1996
callnumber-search QA315.T724 1996
callnumber-sort QA 3315 T724 41996
callnumber-subject QA - Mathematics
classification_rvk SK 660
SK 870
classification_tum MAT 525f
MAT 490f
ctrlnum (OCoLC)32236221
(DE-599)BVBBV010617259
dewey-full 515/.64
515/.6420
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.64
515/.64 20
dewey-search 515/.64
515/.64 20
dewey-sort 3515 264
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04027nam a2200733 c 4500</leader><controlfield tag="001">BV010617259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231017 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960205s1996 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">946513449</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387945113</subfield><subfield code="c">Pp. : DM 84.00</subfield><subfield code="9">0-387-94511-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268871</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-4612-6887-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32236221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010617259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA315.T724 1996</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64 20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 525f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 490f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Troutman, John L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational calculus and optimal control</subfield><subfield code="b">optimization with elementary convexity</subfield><subfield code="c">John L. Troutman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 461 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This book supplies a broad-based introduction to variational methods for formulating and solving problems in mathematics and the applied sciences. It refines and extends the author's earlier text on variational calculus and a supplement on optimal control. It is the only current introductory text that uses elementary partial convexity of differentiable functions to characterize directly the solutions of some minimization problems before exploring necessary conditions for optimality or field theory methods of sufficiency. Through effective notation, it combines rudiments of analysis in (normed) linear spaces with simpler aspects of convexity to offer a multilevel strategy for handling such problems. It also employs convexity considerations to broaden the discussion of Hamilton's principle in mechanics and to introduce Pontjragin's principle in optimal control. It is mathematically self-contained but it uses applications from many disciplines to provide a wealth of examples and exercises. The book is accessible to upper-level undergraduates and should help its user understand theories of increasing importance in a society that values optimal performance."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convexe ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variatierekening</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4612-0737-5</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Früher u.d.T.</subfield><subfield code="a">Troutman, John L.</subfield><subfield code="t">Variational calculus with elementary convexity</subfield><subfield code="w">(DE-604)BV002098294</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=007083225&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007083225</subfield></datafield></record></collection>
id DE-604.BV010617259
illustrated Illustrated
indexdate 2024-11-25T17:14:19Z
institution BVB
isbn 0387945113
9781461268871
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-007083225
oclc_num 32236221
open_access_boolean
owner DE-703
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-384
DE-824
DE-29T
DE-521
DE-634
DE-11
DE-188
DE-19
DE-BY-UBM
owner_facet DE-703
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-384
DE-824
DE-29T
DE-521
DE-634
DE-11
DE-188
DE-19
DE-BY-UBM
physical XV, 461 S. graph. Darst.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer
record_format marc
series2 Undergraduate texts in mathematics
spellingShingle Troutman, John L.
Variational calculus and optimal control optimization with elementary convexity
Convexe ruimten gtt
Optimaliseren gtt
Variatierekening gtt
Calculus of variations
Control theory
Mathematical optimization
Convex functions
Konvexe Optimierung (DE-588)4137027-2 gnd
Variationsrechnung (DE-588)4062355-5 gnd
Konvexe Funktion (DE-588)4139679-0 gnd
Optimale Kontrolle (DE-588)4121428-6 gnd
subject_GND (DE-588)4137027-2
(DE-588)4062355-5
(DE-588)4139679-0
(DE-588)4121428-6
title Variational calculus and optimal control optimization with elementary convexity
title_auth Variational calculus and optimal control optimization with elementary convexity
title_exact_search Variational calculus and optimal control optimization with elementary convexity
title_full Variational calculus and optimal control optimization with elementary convexity John L. Troutman
title_fullStr Variational calculus and optimal control optimization with elementary convexity John L. Troutman
title_full_unstemmed Variational calculus and optimal control optimization with elementary convexity John L. Troutman
title_old Troutman, John L. Variational calculus with elementary convexity
title_short Variational calculus and optimal control
title_sort variational calculus and optimal control optimization with elementary convexity
title_sub optimization with elementary convexity
topic Convexe ruimten gtt
Optimaliseren gtt
Variatierekening gtt
Calculus of variations
Control theory
Mathematical optimization
Convex functions
Konvexe Optimierung (DE-588)4137027-2 gnd
Variationsrechnung (DE-588)4062355-5 gnd
Konvexe Funktion (DE-588)4139679-0 gnd
Optimale Kontrolle (DE-588)4121428-6 gnd
topic_facet Convexe ruimten
Optimaliseren
Variatierekening
Calculus of variations
Control theory
Mathematical optimization
Convex functions
Konvexe Optimierung
Variationsrechnung
Konvexe Funktion
Optimale Kontrolle
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007083225&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT troutmanjohnl variationalcalculusandoptimalcontroloptimizationwithelementaryconvexity