Lack-of-fit detection using the run-distribution test

Abstract: "In this paper, we are concerned with the problem of deciding whether a fitted model accurately describes the data to which it has been fitted. We have developed an effective method of testing the lack-of-fit of a parametric model to data, with applications to the computer vision prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fitzgibbon, Andrew W. (VerfasserIn), Fisher, Robert B. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Edinburgh 1994
Schriftenreihe:University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 685
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010467712
003 DE-604
005 00000000000000.0
007 t|
008 951109s1994 xx |||| 00||| engod
035 |a (OCoLC)32306963 
035 |a (DE-599)BVBBV010467712 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Fitzgibbon, Andrew W.  |e Verfasser  |4 aut 
245 1 0 |a Lack-of-fit detection using the run-distribution test  |c Andrew W. Fitzgibbon and Robert B. Fisher 
264 1 |a Edinburgh  |c 1994 
300 |a 9 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper  |v 685 
520 3 |a Abstract: "In this paper, we are concerned with the problem of deciding whether a fitted model accurately describes the data to which it has been fitted. We have developed an effective method of testing the lack-of-fit of a parametric model to data, with applications to the computer vision problems of robust estimation, model selection, and curve and surface segmentation. The benefits of this technique are high sensitivity (large response to small outliers) and very low dependence on the noise distribution of the input data. Our test is new to the computer vision community in several ways: We look at the distribution of the residual errors, rather than basing statistics directly on their values. We assume a broad enough class of distributions as to be essentially distribution independent. The test requires no knowledge of the sensor noise level, and its response is essentially independent of that level. We present results of experiments that compare the test with the standard x² statistic, and the median absolute deviation (MAD) measure used in robust estimation. The experiments are designed to represent typical vision tasks, namely feature tracking, robust fitting, and segmentation. We show that our test is comparable to the MAD and chi-square, but is cheaper than the MAD, and requires no knowledge of the noise level." 
650 7 |a Pattern recognition, image processing and remote sensing  |2 sigle 
650 4 |a Computer vision 
700 1 |a Fisher, Robert B.  |e Verfasser  |4 aut 
810 2 |a Department of Artificial Intelligence: DAI research paper  |t University <Edinburgh>  |v 685  |w (DE-604)BV010450646  |9 685 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006975439 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6034
DE-BY-TUM_katkey 664428
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010002534
_version_ 1820855182074839040
any_adam_object
author Fitzgibbon, Andrew W.
Fisher, Robert B.
author_facet Fitzgibbon, Andrew W.
Fisher, Robert B.
author_role aut
aut
author_sort Fitzgibbon, Andrew W.
author_variant a w f aw awf
r b f rb rbf
building Verbundindex
bvnumber BV010467712
ctrlnum (OCoLC)32306963
(DE-599)BVBBV010467712
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02434nam a2200313 cb4500</leader><controlfield tag="001">BV010467712</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">951109s1994 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32306963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010467712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fitzgibbon, Andrew W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lack-of-fit detection using the run-distribution test</subfield><subfield code="c">Andrew W. Fitzgibbon and Robert B. Fisher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University &lt;Edinburgh&gt; / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">685</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, we are concerned with the problem of deciding whether a fitted model accurately describes the data to which it has been fitted. We have developed an effective method of testing the lack-of-fit of a parametric model to data, with applications to the computer vision problems of robust estimation, model selection, and curve and surface segmentation. The benefits of this technique are high sensitivity (large response to small outliers) and very low dependence on the noise distribution of the input data. Our test is new to the computer vision community in several ways: We look at the distribution of the residual errors, rather than basing statistics directly on their values. We assume a broad enough class of distributions as to be essentially distribution independent. The test requires no knowledge of the sensor noise level, and its response is essentially independent of that level. We present results of experiments that compare the test with the standard x² statistic, and the median absolute deviation (MAD) measure used in robust estimation. The experiments are designed to represent typical vision tasks, namely feature tracking, robust fitting, and segmentation. We show that our test is comparable to the MAD and chi-square, but is cheaper than the MAD, and requires no knowledge of the noise level."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition, image processing and remote sensing</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fisher, Robert B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University &lt;Edinburgh&gt;</subfield><subfield code="v">685</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">685</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006975439</subfield></datafield></record></collection>
id DE-604.BV010467712
illustrated Not Illustrated
indexdate 2024-12-23T13:59:54Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006975439
oclc_num 32306963
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 9 S.
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
record_format marc
series2 University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
spellingShingle Fitzgibbon, Andrew W.
Fisher, Robert B.
Lack-of-fit detection using the run-distribution test
Pattern recognition, image processing and remote sensing sigle
Computer vision
title Lack-of-fit detection using the run-distribution test
title_auth Lack-of-fit detection using the run-distribution test
title_exact_search Lack-of-fit detection using the run-distribution test
title_full Lack-of-fit detection using the run-distribution test Andrew W. Fitzgibbon and Robert B. Fisher
title_fullStr Lack-of-fit detection using the run-distribution test Andrew W. Fitzgibbon and Robert B. Fisher
title_full_unstemmed Lack-of-fit detection using the run-distribution test Andrew W. Fitzgibbon and Robert B. Fisher
title_short Lack-of-fit detection using the run-distribution test
title_sort lack of fit detection using the run distribution test
topic Pattern recognition, image processing and remote sensing sigle
Computer vision
topic_facet Pattern recognition, image processing and remote sensing
Computer vision
volume_link (DE-604)BV010450646
work_keys_str_mv AT fitzgibbonandreww lackoffitdetectionusingtherundistributiontest
AT fisherrobertb lackoffitdetectionusingtherundistributiontest