Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer [u.a.]
1995
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010409871 | ||
003 | DE-604 | ||
005 | 19961211 | ||
007 | t | ||
008 | 950925s1995 gw ad|| |||| 10||| ger d | ||
016 | 7 | |a 945029811 |2 DE-101 | |
020 | |a 3540592504 |c (Springer) kart. : DM 125.00 |9 3-540-59250-4 | ||
020 | |a 2868832474 |c (Ed. de Physique) kart. : ffr 430.00 |9 2-86883-247-4 | ||
035 | |a (OCoLC)34411850 | ||
035 | |a (DE-599)BVBBV010409871 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-91 |a DE-703 |a DE-29T | ||
050 | 0 | |a QH505 | |
082 | 0 | |a 574.19/12 |2 20 | |
084 | |a WD 2200 |0 (DE-625)148163: |2 rvk | ||
084 | |a WD 2300 |0 (DE-625)148164: |2 rvk | ||
084 | |a PHY 821f |2 stub | ||
245 | 1 | 0 | |a Nonlinear excitations in biomolecules |b Les Houches School, May 30 to June 4, 1994 |c ed. M. Peyrard |
264 | 1 | |a Berlin [u.a.] |b Springer [u.a.] |c 1995 | |
300 | |a XV, 426 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Biomolecules |v Congresses | |
650 | 4 | |a Biophysics |v Congresses | |
650 | 4 | |a DNA |v Congresses | |
650 | 4 | |a Energy Transfer |v Congresses | |
650 | 4 | |a Excited state chemistry |v Congresses | |
650 | 4 | |a Molecular Biology |v Congresses | |
650 | 4 | |a Nonlinear Dynamics |v Congresses | |
650 | 4 | |a Proteins |v Congresses | |
650 | 4 | |a Solitons |v Congresses | |
650 | 0 | 7 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekularbiologie |0 (DE-588)4039983-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biomolekül |0 (DE-588)4135124-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angeregter Zustand |0 (DE-588)4142423-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1994 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Molekularbiologie |0 (DE-588)4039983-7 |D s |
689 | 0 | 1 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biomolekül |0 (DE-588)4135124-1 |D s |
689 | 1 | 1 | |a Angeregter Zustand |0 (DE-588)4142423-2 |D s |
689 | 1 | 2 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Peyrard, Michel |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006932555&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006932555 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0001/96 A 2313 |
---|---|
DE-BY-TUM_katkey | 769421 |
DE-BY-TUM_local_keycode | ko |
DE-BY-TUM_media_number | 040001985862 |
_version_ | 1816711746659811328 |
adam_text | CONTENTS
LECTURE
1
The intersection of nonlinear science, molecular biology, and condensed
matter physics. Viewpoints
by
JA. Krumhansl
1.
Introduction
................................................................................................................... 1
2.
Viewpoints
.................................................................................................................... 2
2.1.
Scientific objectives differ intrinsically
.................................................................... 2
2.2.
Differentiation
........................................................................................................ 3
2 3.
Biomolecules as polymers are treated realistically these days
.................................. 4
2.4
Models play an important role in Science
................................................................ 6
2.5
Towards more and finer measurements
................................................................... 7
2.6.
Some paradigms in current nonlinear science
.......................................................... 8
3
Concluding remarks
....................................................................................................... 9
LECTURE
2
Introduction to solitons and their applications in physics and biology
by M. Peyrard
1.
The specificity of nonlinear systems
............................................................................... 11
2.
The concept of
solitoti
................................................................................................... 12
3.
Conditions to have solitons
............................................................................................ 15
4
The different classes of solitons
...................................................................................... 16
5.
Solitons are everywhere!
................................................................................................ 18
6.
The formation of solitons nonlinear energy localization
................................................. 21
7.
Conclusion
..................................................................................................................... 24
CHAPTER I
DNA,
structure and function
..... 27
LECTURE
3
Selected topics in molecular biology, in need of hard science
by C. Reiss
1. DNA
Structure
.............................................................................................................. 29
2.
Gene expression
............................................................................................................. 36
3.
Control and regulation of gene expression: physical aspects
........................................... 46
4.
The protein folding problem
........................................................................................... 50
5.
Conclusion
..................................................................................................................... 54
VI
LECTURE
4
Modelling the
DNA
double helix: techniques and results
by R. Lavery
1.
Introduction
................................................................................................................... 57
2.
Modelling techniques
..................................................................................................... 58
2.1.
Modelling nucleic acids using adapted coordinate systems
...................................... 60
2.2.
Conformational analysis
.......................................................................................... 62
3. DNA
fine structure
........................................................................................................ 62
3.1.
Energy surface mapping
......................................................................................... 65
3.2.
Combinatorial searches
........................................................................................... 66
3.3.
Building long sequences by superposition
............................................................... 71
4.
Flexibility and structural transitions
................................................................................ 72
4.1.
Base pair opening
................................................................................................... 72
4.2.
Backbone transitions
.............................................................................................. 75
4.3.
Transitions between allomorphic forms
................................................................... 77
5. DNA
dynamics and large scale simulations
..................................................................... 79
6.
Conclusions
................................................................................................................... 79
LECTURE
5
Potential-of-mean-force description of ionic interactions and structural
hyd
ration in biomolecular systems
by G. Hummer,
D.M.
Soumpasis and A.E. Garcia
1.
Introduction
................................................................................................................... 83
2.
The statistical-mechanical foundation of the potential-of-mean-force formalism
.............. 84
3.
Interactions of nucleic acids with ionic solutions
............................................................ 86
4
A statistical-mechanical theory of biomolecular hydration
.............................................. 87
4.1.
Introductory remarks
.............................................................................................. 87
4.2.
Density expansion in inhomogeneous liquid systems
............................................... 88
4.3.
The water-density profile at the interface of ice and water
...................................... 89
4.4.
Hydration of biological macromolecules: Results for
DNA..................................... 92
5.
Conclusions
................................................................................................................... 96
LECTURE
6
Inelastic neutron scattering studies of oriented
DNA
by H. Grimm and A. Rupprecht
1.
Introduction
................................................................................................................... 101
2.
Self correlation
.............................................................................................................. 103
2.1.
Time-of-flight spectra
............................................................................................. 103
2.2.
Scattering function
................................................................................................. 105
2.3.
Eigenvalue density
.................................................................................................. 106
2.4.
Analysis of self correlation spectra
.......................................................................... 107
VII
3.
Distinct
correlation
........................................................................................................
ПО
4.
Central component
......................................................................................................... 112
5.
Conclusions
................................................................................................................... 113
LECTURE
7
Model simulations of base pair motion in B-DNA
by M.A. Collins and F. Zhang
1.
Introduction
................................................................................................................... 117
2.
What sort of model?
...................................................................................................... 118
3.
The model
..................................................................................................................... 118
3.1.
Model potential surface
.......................................................................................... 120
4.
Some dynamical averages of this model
DNA
motion
.................................................... 121
4.1.
Hydrogen bond breaking
........................................................................................ 122
4.2.
RMS atomic displacements
................................................................................. 123
4.3.
Large amplitude excitations
.................................................................................... 124
4.4.
Correlations
........................................................................................................... 124
5.
Concluding remarks
....................................................................................................... 124
LECTURE
8
A nonlinear model for
DNA
melting
by T. Dauxois and M. Peyrard
1.
Introduction
................................................................................................................... 127
2.
The nonlinear dynamical model
...................................................................................... 129
3.
Dynamics of the melting
................................................................................................. 130
4.
Formation of denaturation bubbles
................................................................................. 133
5.
Statistical mechanics
...................................................................................................... 134
5.1.
Melting transition
................................................................................................... 134
5.2.
Entropy driven
DNA
denaturation
.......................................................................... 134
6.
Conclusion
..................................................................................................................... 136
LECTURE
9
Dynamics of conformational excitations in the
DNA macromolecule
by A.M. Kosevich and S.N. Volkov
1.
Introduction
............................................................................................................... 137
2.
The model constructing
................................................................................................ 138
3.
The conformational vibrations
...................................................................................... 140
4.
The conformational solitons
......................................................................................... 142
VIII
LECTURE
10
Nonlinear dynamics of plasmid pBR322 promoters
by M. Salerno
1.
Introduction
................................................................................................................... 147
2.
The model
..................................................................................................................... 148
3.
Numerical experiment and analysis
................................................................................. 149
4.
Conclusions
................................................................................................................... 153
LECTURE
11
Helical geometry and
DNA
models
by G. Gaeta
1.
Introduction
................................................................................................................... 155
2.
Selection of relevant degrees of freedom
........................................................................ 156
3.
Description of the interactions
....................................................................................... 157
4. DNA hamiltonians......................................................................................................... 159
5. DNA
dynamics
.............................................................................................................. 160
6.
Dispersion relations, and breather solutions
.................................................................... 160
7.
Soliton solutions
............................................................................................................ 161
8.
Ising model approach
..................................................................................................... 162
9.
Conclusions
................................................................................................................... 163
LECTURE
12
Nonlinear localized excitations and the dynamics of
Н
-bonds in
DNA
by S.
Flach
and C.R. Willis
1.
Introduction
............................................................................................................
2.
Н
-bond
dynamics
....................................................................................................
2.1.
Model classes
..................................................................................................
2.2.
Nonlinear localized excitations
........................................................................
3
Functioning with NLEs
-
phonon scattering
............................................................
IX
CHAPTER II
Proteins, conformation and dynamics
..... 175
LECTURE
13
Proteins and the physics of complexity
by H.
Frauenfelder
1.
Proteins
......................................................................................................................... 177
2.
The approach
................................................................................................................. 179
3.
The structure of proteins
................................................................................................ 179
4.
The energy landscape
..................................................................................................... 180
4.1.
The experimental evidence for conformational substates
......................................... 181
4.1.1.
Ligand binding to myoglobin
........................................................................... 181
4.1.2.
Spectroscopic hole burning
............................................................................. 184
4.2.
The hierarchy of conformational substates
.............................................................. 184
4.2.1.
Taxonomie
conformational substates
............................................................... 185
4.2.2.
Statistical substates
......................................................................................... 185
4.3.
Conformational excitations
..................................................................................... 186
4.4.
Theoretical and computational studies
.................................................................... 186
5.
Some remarks
................................................................................................................ 186
LECTURE
14
Multi-basin dynamics of a protein in aqueous solution
by A.E. Garcia
1.
Introduction
................................................................................................................... 191
2.
Description of the system
............................................................................................... 192
3.
Results and discussion
................................................................................................... 193
3.1.
Localized non-linear motions
.................................................................................. 193
3.2.
Delocalized non-linear motions
............................................................................... 196
3.2.1.
Tree analysis
................................................................................................... 197
3.3
Molecule optimal dynamical coordinates (MODC)
................................................. 199
4.
Conclusions
................................................................................................................... 206
LECTURE
15
Nonlinear excitations in molecular crystals with chains of
peptide
bonds
by M. Barthes
1.
Introduction
.......................................................................................................... 209
2
Acetanilide and derivatives
........................................................................ 209
2.1
Infrared results
........................................................................................ 211
χ
2.2.
Raman scattering
.................................................................................................... 213
2 3
Low temperature neutron diffraction
...................................................................... 213
2.4.
Discussion
.............................................................................................................. 215
3.
N-methylacetamide
........................................................................................................ 215
4.
L-alanine and polyalanines
............................................................................................. 219
5.
Nucleotides, polypeptides and proteins
.......................................................................... 219
6.
Conclusion
..................................................................................................................... 220
LECTURE
16
Low temperature Raman spectra of acetanilide and its deuterated
derivatives: comparison with normal mode analysis
by G.
De Nunzio
1.
Introduction
................................................................................................................... 223
1.1.
Bioenergetics
......................................................................................................... 223
1.1.1.
Davydov s soliton
........................................................................................... 224
1.2.
Where ACN comes in
............................................................................................. 224
1.3.
Optical anomalies in ACN
...................................................................................... 225
1.4.
Theories and experiments
....................................................................................... 225
2.
Normal mode analysis
.................................................................................................... 226
2.1
The program CHARMm
......................................................................................... 226
2.2.
Results
................................................................................................................... 227
2.2.1.
The range
1400-1700
cm 1
.............................................................................. 227
2.2.2.
Some other frequency range
............................................................................ 230
LECTURE
17
Conformational dynamics of proteins: beyond the nanosecond time scale
by H.
Grubmüller, N.
Ehrenhofer and P.
Tavan
1.
Introduction
................................................................................................................... 231
2.
A simplified protein model
............................................................................................. 232
3
Configurational space and conformational substates
....................................................... 233
4
Conformational coordinates from neural clustering
......................................................... 235
5
Conformational coordinates from principal component analysis
...................................... 237
6
Summary and conclusion
............................................................................................... 239
XI
LECTURE
18
Motions
and correlations of the
transmembrane domain
of a protein
receptor studied by molecular dynamics simulation
by
N.
Gamier, D.
Genest
and M.
Genest
1.
Introduction
................................................................................................................... 241
2.
Materials and methods
.................................................................................................. 241
2.1.
Molecular dynamics simulation
............................................................................... 24
1
2.2.
Correlations
........................................................................................................... 242
2.3.
Propagation of a local perturbation
......................................................................... 242
3.
Results
........................................................................................................................... 243
4.
Discussion and conclusion
............................................................................................. 246
CHAPTER III
Energy and charge transport
..... 247
LECTURE
19
Solitary waves in biology
by
A.C.
Scott
1.
Introduction
................................................................................................................... 249
2.
The nerve impulse
.......................................................................................................... 250
2.1.
Linear and nonlinear diffusion
................................................................................. 250
2.2.
The Hodgkin-Huxley equations
.............................................................................. 250
3.
Soiitons in protein
.......................................................................................................... 254
3.1.
Polarons
and
conformons
....................................................................................... 254
3.2.
Vibrational energy transport
................................................................................... 255
3.3.
Quantum theory
..................................................................................................... 257
3.4.
Thermal effects
....................................................................................................... 258
3.5.
Crystalline acetanilide
............................................................................................. 260
3.6.
Transport of electronic charge
................................................................................ 261
3.7. Protonic soiitons.................................................................................................... 262
3.8.
Biological applications
............................................................................................ 262
4.
Conclusions
................................................................................................................... 265
LECTURE
20
Exact two-quantum states of the seniiclassical Davydov model and their
thermal stability
by L. Cruzeiro-Hansson and
V.M.
Kenkre
1
Introduction
.......................................................................................................... 269
2.
The Davydov model
.......................................................................................... 270
хи
3.
Two-quantum states and their thermal stability
............................................................... 271
4.
General remarks
............................................................................................................. 274
LECTURE
21
Post-soliton quantum mechanics
by
D.W.
Brown
The inverse problem
.......................................................................................................... 280
General properties of Wannier states
.................................................................................. 281
Weak coupling limits
......................................................................................................... 283
Conclusion
........................................................................................................................ 286
LECTURE
22
Dynamic form factor for the Yomosa model for the energy transport in
proteins
by
A. Neuper
and F.G. Mertens
1.
Solitons in muscle fibers
................................................................................................. 287
2
Form factors in the
Toda
lattice
..................................................................................... 287
2.1.
Simulation results
................................................................................................... 289
2.2.
Cnoidal-wave approach
.......................................................................................... 290
2.3.
The soliton limit
..................................................................................................... 292
3.
Summary
....................................................................................................................... 293
LECTURE
23
Energy and charge transfer in photosynthesis
by W.
Mantele
1.
Introduction. Photosynthesis: a physico-chemo-biologist s view
..................................... 295
2.
The
lipid
bilayer membrane as a structural basis
............................................................. 296
3
Pigments used for light absorption in photosynthesis
...................................................... 298
4.
Pigments and proteins form pigment-protein-complexes
................................................. 300
5.
Antenna systems of plants and bacteria
.......................................................................... 302
6
From antennae to reaction centers: converting and stabilizing light energy
...................... 304
7.
Information on structure and composition of reaction centers
......................................... 306
8.
Characteristics of a quinone type reaction center
......................................................... 307
9
Primary processes, forward, and reverse electron transfer and the corresponding rates in
the reaction center
......................................................................................................... 308
10
Why do reaction centers use
quiñones
as electron acceptors?
....................................... 310
11
What is the molecular basis for external reorganization energy in the reaction center?
.. 312
12.
Concluding remarks
..................................................................................................... 314
XIII
LECTURE
24
The role of
nonlinea
rity
in modelling energy transfer in
Scheibe
aggregates
by O. Bang, P.L. Christiansen, K..0.
Rasmussen
and Y.B. Gaididei
1.
Introduction
................................................................................................................... 317
2. Scheibe
aggregates
........................................................................................................ 318
2.1.
Langmuir-Blodgett films and
Scheibe
aggregates
.................................................... 318
2.2.
Experiments on Langmuir-Blodgett
Scheibe
aggregates
.......................................... 319
2.3.
Applications, and the connection with photosynthesis
............................................. 321
2.4.
Physical models
...................................................................................................... 324
3.
The nonlinear model
...................................................................................................... 325
3.1.
Derivation
.............................................................................................................. 325
3.2.
Parameter values fora monolayer oxacyanine LB
Scheibe
aggregate
...................... 327
3.3.
Approximations of the colored noise
...................................................................... 329
3.4.
Choosing the initial condition
................................................................................. 330
3.5.
Nonlinear coherence time for the ground state solitary wave solution
..................... 331
3.6.
The role of collapse
................................................................................................ 333
4.
Conclusion
..................................................................................................................... 335
LECTURE
25
Protons in hydrated protein powders
by G. Careri, F.
Bruni
and G.
Consolini
1.
Abstract
......................................................................................................................... 337
2.
Proton percolation and emergence of biological function in nearly dry
biosystems
.......... 338
3.
Likely detection of
protonie
polarons
in percolative water clusters adsorbed on lysozyme
powders
............................................................................................................................. 341
LECTURE
26
Nonlinear models of collective proton transport in hydrogen-bonded systems
by M. Peyrard
1.
Introduction
................................................................................................................... 349
2.
The physical problem and the first answers
..................................................................... 350
3.
The A-D-Z soliton model for proton transport
............................................................... 351
4.
Is there an experimental evidence of the soliton0
........................................................... 354
5.
Conclusion
..................................................................................................................... 359
XIV
LECTURE
27
Proton-solitons bridge
physics with biology
by G.P. Tsironis
1.
Introduction
................................................................................................................... 361
2.
Proton-soliton mobility
.................................................................................................. 363
3.
Quantum tunnelling
........................................................................................................ 364
4.
Conclusions
................................................................................................................... 365
Appendix. Calculation of the classical solitonmass
............................................................ 365
Semiclassical correction
.................................................................................... 366
LECTURE
28
Neutron scattering studies of biopolymer-water systems: solvent mobility
and collective excitations
by H.D. Middendorf
1.
Introduction
................................................................................................................... 369
2.
Basic relations and scattering properties
......................................................................... 370
3.
Globular proteins at low hydration
................................................................................. 372
3.1.
Hydration dynamics of phycocyanin in the sorption regime
..................................... 372
3.2
High-resolution quasi-elastic scattering,
Λω<
100
цеУ...........................................
373
3.3
Quasi-elastic and inelastic scattering
with/ttû
> 100
μεν
........................................ 376
4.
Highly hydrated systems: polymer and biopolymer gels
.................................................. 377
4.1.
Structure and dynamics of aqueous gels
.................................................................. 377
4.2.
Quasi-elastic scattering
........................................................................................... 378
4.3.
Inelastic scattering
.................................................................................................. 380
5.
Conclusions
................................................................................................................... 381
CHAPTER IV
Beyond biological molecules
..... 385
LECTURE
29
The cell s microtubules: self-organization and information processing
properties
by
JA.
Tuszynski,
B. Trpisová, D.
Sept, M.V.
Satane
and
S.
Hameroff
1.
Background information
................................................................................................ 387
2.
Assembly/disassembly modelling
.................................................................................. 389
3
The dipolar lattice and its phases
.................................................................................... 390
4
Dynamics in the ferroelectric phase
............................................................................. 393
XV
5.
Stability of the spin-glass phase
...................................................................................... 3 98
6
Information capacity in various phases
........................................................................... 400
7.
Summary
...................................................................................................................... 403
LECTURE
30
Translation optimization in bacteria: statistical models
by F.
Bagnoli,
G.
Guasti
and P.
Lió
1.
Introduction
................................................................................................................... 405
2.
A dynamical model
........................................................................................................ 406
3.
Statistical mechanics
...................................................................................................... 408
4.
Concluding remarks
....................................................................................................... 410
LECTURE
31
Dynamics of vibrational dissociation of a pseudo-cluster
by D. Hennig and H. Gabriel
1.
Introduction
................................................................................................................... 413
2.
The model hamiltonian
................................................................................................... 413
3.
Dynamics of the model
.................................................................................................. 415
3.1.
Whisker map
.......................................................................................................... 415
3.2.
Resonance overlap
................................................................................................. 416
LECTURE
32
The step-potential model for
π
-electrons
in hydrocarbon-systems
by
С
Kuhn
1.
Introduction
................................................................................................................... 42
1
2.
Non-linear optics
........................................................................................................... 423
3.
Kinks in polyacetylene: statics and dynamics
.................................................................. 423
4.
The
Сю
molecule
........................................................................................................... 425
CONCLUSION
..... 427
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV010409871 |
callnumber-first | Q - Science |
callnumber-label | QH505 |
callnumber-raw | QH505 |
callnumber-search | QH505 |
callnumber-sort | QH 3505 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WD 2200 WD 2300 |
classification_tum | PHY 821f |
ctrlnum | (OCoLC)34411850 (DE-599)BVBBV010409871 |
dewey-full | 574.19/12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 574 - [Unassigned] |
dewey-raw | 574.19/12 |
dewey-search | 574.19/12 |
dewey-sort | 3574.19 212 |
dewey-tens | 570 - Biology |
discipline | Physik Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02490nam a2200625 c 4500</leader><controlfield tag="001">BV010409871</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19961211 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950925s1995 gw ad|| |||| 10||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">945029811</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540592504</subfield><subfield code="c">(Springer) kart. : DM 125.00</subfield><subfield code="9">3-540-59250-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2868832474</subfield><subfield code="c">(Ed. de Physique) kart. : ffr 430.00</subfield><subfield code="9">2-86883-247-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34411850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010409871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH505</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">574.19/12</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2200</subfield><subfield code="0">(DE-625)148163:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2300</subfield><subfield code="0">(DE-625)148164:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 821f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear excitations in biomolecules</subfield><subfield code="b">Les Houches School, May 30 to June 4, 1994</subfield><subfield code="c">ed. M. Peyrard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer [u.a.]</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 426 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomolecules</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biophysics</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Transfer</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Excited state chemistry</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular Biology</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamics</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomolekül</subfield><subfield code="0">(DE-588)4135124-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angeregter Zustand</subfield><subfield code="0">(DE-588)4142423-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1994</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biomolekül</subfield><subfield code="0">(DE-588)4135124-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Angeregter Zustand</subfield><subfield code="0">(DE-588)4142423-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peyrard, Michel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006932555&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006932555</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1994 Les Houches gnd-content |
genre_facet | Konferenzschrift 1994 Les Houches |
id | DE-604.BV010409871 |
illustrated | Illustrated |
indexdate | 2024-11-25T17:14:19Z |
institution | BVB |
isbn | 3540592504 2868832474 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006932555 |
oclc_num | 34411850 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-703 DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-703 DE-29T |
physical | XV, 426 S. Ill., graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer [u.a.] |
record_format | marc |
spellingShingle | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 Biomolecules Congresses Biophysics Congresses DNA Congresses Energy Transfer Congresses Excited state chemistry Congresses Molecular Biology Congresses Nonlinear Dynamics Congresses Proteins Congresses Solitons Congresses Nichtlineares Phänomen (DE-588)4136065-5 gnd Soliton (DE-588)4135213-0 gnd Molekularbiologie (DE-588)4039983-7 gnd Biomolekül (DE-588)4135124-1 gnd Angeregter Zustand (DE-588)4142423-2 gnd |
subject_GND | (DE-588)4136065-5 (DE-588)4135213-0 (DE-588)4039983-7 (DE-588)4135124-1 (DE-588)4142423-2 (DE-588)1071861417 |
title | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 |
title_auth | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 |
title_exact_search | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 |
title_full | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 ed. M. Peyrard |
title_fullStr | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 ed. M. Peyrard |
title_full_unstemmed | Nonlinear excitations in biomolecules Les Houches School, May 30 to June 4, 1994 ed. M. Peyrard |
title_short | Nonlinear excitations in biomolecules |
title_sort | nonlinear excitations in biomolecules les houches school may 30 to june 4 1994 |
title_sub | Les Houches School, May 30 to June 4, 1994 |
topic | Biomolecules Congresses Biophysics Congresses DNA Congresses Energy Transfer Congresses Excited state chemistry Congresses Molecular Biology Congresses Nonlinear Dynamics Congresses Proteins Congresses Solitons Congresses Nichtlineares Phänomen (DE-588)4136065-5 gnd Soliton (DE-588)4135213-0 gnd Molekularbiologie (DE-588)4039983-7 gnd Biomolekül (DE-588)4135124-1 gnd Angeregter Zustand (DE-588)4142423-2 gnd |
topic_facet | Biomolecules Congresses Biophysics Congresses DNA Congresses Energy Transfer Congresses Excited state chemistry Congresses Molecular Biology Congresses Nonlinear Dynamics Congresses Proteins Congresses Solitons Congresses Nichtlineares Phänomen Soliton Molekularbiologie Biomolekül Angeregter Zustand Konferenzschrift 1994 Les Houches |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006932555&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT peyrardmichel nonlinearexcitationsinbiomoleculesleshouchesschoolmay30tojune41994 |