Automating recursive type definitions in higher order logic

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Melham, Thomas F. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge 1988
Schriftenreihe:Computer Laboratory <Cambridge>: Technical report 146
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010408643
003 DE-604
005 19960925
007 t
008 951005s1988 |||| 00||| engod
035 |a (OCoLC)19642049 
035 |a (DE-599)BVBBV010408643 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
084 |a DAT 540f  |2 stub 
100 1 |a Melham, Thomas F.  |e Verfasser  |4 aut 
245 1 0 |a Automating recursive type definitions in higher order logic 
264 1 |a Cambridge  |c 1988 
300 |a 64 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Computer Laboratory <Cambridge>: Technical report  |v 146 
650 7 |a Computer hardware  |2 sigle 
650 7 |a Computer software  |2 sigle 
650 7 |a Mathematics  |2 sigle 
650 4 |a Mathematik 
650 4 |a Automatic theorem proving 
650 4 |a Logic 
830 0 |a Computer Laboratory <Cambridge>: Technical report  |v 146  |w (DE-604)BV004055605  |9 146 
999 |a oai:aleph.bib-bvb.de:BVB01-006931729 

Datensatz im Suchindex

_version_ 1804124836878876672
any_adam_object
author Melham, Thomas F.
author_facet Melham, Thomas F.
author_role aut
author_sort Melham, Thomas F.
author_variant t f m tf tfm
building Verbundindex
bvnumber BV010408643
classification_tum DAT 540f
ctrlnum (OCoLC)19642049
(DE-599)BVBBV010408643
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01023nam a2200337 cb4500</leader><controlfield tag="001">BV010408643</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960925 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951005s1988 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19642049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010408643</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 540f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Melham, Thomas F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automating recursive type definitions in higher order logic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">64 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computer Laboratory &lt;Cambridge&gt;: Technical report</subfield><subfield code="v">146</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer hardware</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computer Laboratory &lt;Cambridge&gt;: Technical report</subfield><subfield code="v">146</subfield><subfield code="w">(DE-604)BV004055605</subfield><subfield code="9">146</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006931729</subfield></datafield></record></collection>
id DE-604.BV010408643
illustrated Not Illustrated
indexdate 2024-07-09T17:52:00Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006931729
oclc_num 19642049
open_access_boolean
physical 64 S.
publishDate 1988
publishDateSearch 1988
publishDateSort 1988
record_format marc
series Computer Laboratory <Cambridge>: Technical report
series2 Computer Laboratory <Cambridge>: Technical report
spelling Melham, Thomas F. Verfasser aut
Automating recursive type definitions in higher order logic
Cambridge 1988
64 S.
txt rdacontent
n rdamedia
nc rdacarrier
Computer Laboratory <Cambridge>: Technical report 146
Computer hardware sigle
Computer software sigle
Mathematics sigle
Mathematik
Automatic theorem proving
Logic
Computer Laboratory <Cambridge>: Technical report 146 (DE-604)BV004055605 146
spellingShingle Melham, Thomas F.
Automating recursive type definitions in higher order logic
Computer Laboratory <Cambridge>: Technical report
Computer hardware sigle
Computer software sigle
Mathematics sigle
Mathematik
Automatic theorem proving
Logic
title Automating recursive type definitions in higher order logic
title_auth Automating recursive type definitions in higher order logic
title_exact_search Automating recursive type definitions in higher order logic
title_full Automating recursive type definitions in higher order logic
title_fullStr Automating recursive type definitions in higher order logic
title_full_unstemmed Automating recursive type definitions in higher order logic
title_short Automating recursive type definitions in higher order logic
title_sort automating recursive type definitions in higher order logic
topic Computer hardware sigle
Computer software sigle
Mathematics sigle
Mathematik
Automatic theorem proving
Logic
topic_facet Computer hardware
Computer software
Mathematics
Mathematik
Automatic theorem proving
Logic
volume_link (DE-604)BV004055605
work_keys_str_mv AT melhamthomasf automatingrecursivetypedefinitionsinhigherorderlogic