Combinatorial semantics
Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Rochester, NY
1995
|
Schriftenreihe: | University of Rochester <Rochester, NY> / Department of Computer Science: Technical report
563 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010380184 | ||
003 | DE-604 | ||
005 | 20150130 | ||
007 | t | ||
008 | 950911s1995 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)37856802 | ||
035 | |a (DE-599)BVBBV010380184 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Kyburg, Henry Ely |d 1928- |e Verfasser |0 (DE-588)128490950 |4 aut | |
245 | 1 | 0 | |a Combinatorial semantics |c Henry E. Kyburg |
264 | 1 | |a Rochester, NY |c 1995 | |
300 | |a 58 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University of Rochester <Rochester, NY> / Department of Computer Science: Technical report |v 563 | |
520 | 3 | |a Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization." | |
650 | 4 | |a Formal languages |x Semantics | |
650 | 4 | |a Logic | |
650 | 4 | |a Semantics (Philosophy) | |
650 | 4 | |a Uncertainty | |
810 | 2 | |a Department of Computer Science: Technical report |t University of Rochester <Rochester, NY> |v 563 |w (DE-604)BV008902697 |9 563 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006910291 |
Datensatz im Suchindex
_version_ | 1804124804075225088 |
---|---|
any_adam_object | |
author | Kyburg, Henry Ely 1928- |
author_GND | (DE-588)128490950 |
author_facet | Kyburg, Henry Ely 1928- |
author_role | aut |
author_sort | Kyburg, Henry Ely 1928- |
author_variant | h e k he hek |
building | Verbundindex |
bvnumber | BV010380184 |
ctrlnum | (OCoLC)37856802 (DE-599)BVBBV010380184 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01891nam a2200325 cb4500</leader><controlfield tag="001">BV010380184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950911s1995 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37856802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010380184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kyburg, Henry Ely</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128490950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial semantics</subfield><subfield code="c">Henry E. Kyburg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Rochester, NY</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">58 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University of Rochester <Rochester, NY> / Department of Computer Science: Technical report</subfield><subfield code="v">563</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal languages</subfield><subfield code="x">Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantics (Philosophy)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">University of Rochester <Rochester, NY></subfield><subfield code="v">563</subfield><subfield code="w">(DE-604)BV008902697</subfield><subfield code="9">563</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006910291</subfield></datafield></record></collection> |
id | DE-604.BV010380184 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:51:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006910291 |
oclc_num | 37856802 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 58 S. graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | University of Rochester <Rochester, NY> / Department of Computer Science: Technical report |
spelling | Kyburg, Henry Ely 1928- Verfasser (DE-588)128490950 aut Combinatorial semantics Henry E. Kyburg Rochester, NY 1995 58 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier University of Rochester <Rochester, NY> / Department of Computer Science: Technical report 563 Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization." Formal languages Semantics Logic Semantics (Philosophy) Uncertainty Department of Computer Science: Technical report University of Rochester <Rochester, NY> 563 (DE-604)BV008902697 563 |
spellingShingle | Kyburg, Henry Ely 1928- Combinatorial semantics Formal languages Semantics Logic Semantics (Philosophy) Uncertainty |
title | Combinatorial semantics |
title_auth | Combinatorial semantics |
title_exact_search | Combinatorial semantics |
title_full | Combinatorial semantics Henry E. Kyburg |
title_fullStr | Combinatorial semantics Henry E. Kyburg |
title_full_unstemmed | Combinatorial semantics Henry E. Kyburg |
title_short | Combinatorial semantics |
title_sort | combinatorial semantics |
topic | Formal languages Semantics Logic Semantics (Philosophy) Uncertainty |
topic_facet | Formal languages Semantics Logic Semantics (Philosophy) Uncertainty |
volume_link | (DE-604)BV008902697 |
work_keys_str_mv | AT kyburghenryely combinatorialsemantics |