Combinatorial semantics

Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kyburg, Henry Ely 1928- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Rochester, NY 1995
Schriftenreihe:University of Rochester <Rochester, NY> / Department of Computer Science: Technical report 563
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010380184
003 DE-604
005 20150130
007 t
008 950911s1995 d||| |||| 00||| eng d
035 |a (OCoLC)37856802 
035 |a (DE-599)BVBBV010380184 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-29T 
100 1 |a Kyburg, Henry Ely  |d 1928-  |e Verfasser  |0 (DE-588)128490950  |4 aut 
245 1 0 |a Combinatorial semantics  |c Henry E. Kyburg 
264 1 |a Rochester, NY  |c 1995 
300 |a 58 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a University of Rochester <Rochester, NY> / Department of Computer Science: Technical report  |v 563 
520 3 |a Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization." 
650 4 |a Formal languages  |x Semantics 
650 4 |a Logic 
650 4 |a Semantics (Philosophy) 
650 4 |a Uncertainty 
810 2 |a Department of Computer Science: Technical report  |t University of Rochester <Rochester, NY>  |v 563  |w (DE-604)BV008902697  |9 563 
999 |a oai:aleph.bib-bvb.de:BVB01-006910291 

Datensatz im Suchindex

_version_ 1804124804075225088
any_adam_object
author Kyburg, Henry Ely 1928-
author_GND (DE-588)128490950
author_facet Kyburg, Henry Ely 1928-
author_role aut
author_sort Kyburg, Henry Ely 1928-
author_variant h e k he hek
building Verbundindex
bvnumber BV010380184
ctrlnum (OCoLC)37856802
(DE-599)BVBBV010380184
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01891nam a2200325 cb4500</leader><controlfield tag="001">BV010380184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950911s1995 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37856802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010380184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kyburg, Henry Ely</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128490950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial semantics</subfield><subfield code="c">Henry E. Kyburg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Rochester, NY</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">58 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University of Rochester &lt;Rochester, NY&gt; / Department of Computer Science: Technical report</subfield><subfield code="v">563</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal languages</subfield><subfield code="x">Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantics (Philosophy)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">University of Rochester &lt;Rochester, NY&gt;</subfield><subfield code="v">563</subfield><subfield code="w">(DE-604)BV008902697</subfield><subfield code="9">563</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006910291</subfield></datafield></record></collection>
id DE-604.BV010380184
illustrated Illustrated
indexdate 2024-07-09T17:51:29Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006910291
oclc_num 37856802
open_access_boolean
owner DE-29T
owner_facet DE-29T
physical 58 S. graph. Darst.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
record_format marc
series2 University of Rochester <Rochester, NY> / Department of Computer Science: Technical report
spelling Kyburg, Henry Ely 1928- Verfasser (DE-588)128490950 aut
Combinatorial semantics Henry E. Kyburg
Rochester, NY 1995
58 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
University of Rochester <Rochester, NY> / Department of Computer Science: Technical report 563
Abstract: "In ordinary first order logic, a valid inference in a language L is one in which the conclusion is true in every model of the language in which the premises are true. To accommodate inductive/uncertain/probabilistic nonmonotonic inference, we weaken that demand to the demand that the conclusion be true in a large proportion of the models in which the relevant premises are true. More generally, we say that an inference is [p, q] valid if its conclusion is true in a proportion lying between p and q of those models in which the relevant premises are true. If we include a statistical variable binding operator '%' in our language, there are many quite general (and useful) things we can say about uncertain validity. A surprising result is that some of these things may conflict with Bayesian Conditionalization."
Formal languages Semantics
Logic
Semantics (Philosophy)
Uncertainty
Department of Computer Science: Technical report University of Rochester <Rochester, NY> 563 (DE-604)BV008902697 563
spellingShingle Kyburg, Henry Ely 1928-
Combinatorial semantics
Formal languages Semantics
Logic
Semantics (Philosophy)
Uncertainty
title Combinatorial semantics
title_auth Combinatorial semantics
title_exact_search Combinatorial semantics
title_full Combinatorial semantics Henry E. Kyburg
title_fullStr Combinatorial semantics Henry E. Kyburg
title_full_unstemmed Combinatorial semantics Henry E. Kyburg
title_short Combinatorial semantics
title_sort combinatorial semantics
topic Formal languages Semantics
Logic
Semantics (Philosophy)
Uncertainty
topic_facet Formal languages Semantics
Logic
Semantics (Philosophy)
Uncertainty
volume_link (DE-604)BV008902697
work_keys_str_mv AT kyburghenryely combinatorialsemantics