Analysis of the implicit Euler local uniform grid refinement method

Abstract: "The subject of the paper belongs to the field of numerical solution of time-dependent partial differential equations. Attention is focussed on parabolic problems the solution of which possess sharp moving transitions in space and time, such as steep moving fronts and emerging and dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trompert, Ron A. (VerfasserIn), Verwer, Jan (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1990
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1990,11
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010188985
003 DE-604
005 00000000000000.0
007 t
008 950518s1990 |||| 00||| engod
035 |a (OCoLC)23947185 
035 |a (DE-599)BVBBV010188985 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Trompert, Ron A.  |e Verfasser  |4 aut 
245 1 0 |a Analysis of the implicit Euler local uniform grid refinement method  |c R. A. Trompert ; J. G. Verwer 
264 1 |a Amsterdam  |c 1990 
300 |a 43 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM  |v 1990,11 
520 3 |a Abstract: "The subject of the paper belongs to the field of numerical solution of time-dependent partial differential equations. Attention is focussed on parabolic problems the solution of which possess sharp moving transitions in space and time, such as steep moving fronts and emerging and disappearing layers. An adaptive grid method is analysed that refines the space grid locally around sharp spatial transitions, so as to avoid discretization on a very fine grid over the entire physical domain. This method is based on the techniques called static-regridding and local uniform grid refinement. Static-regridding means that in the course of the time evolution the space grid is adapted at discrete times 
520 3 |a Local uniform grid refinement means that the actual adaptation of the space grid takes place using nested locally uniformly refined grids. These uniform subgrids possess non physical boundaries and on each of these subgrids an integration is carried out. The present paper concentrates on stability and error analysis while using the implicit Euler method for time integration. Maximum norm stability and convergence results are proved for a certain class of linear and nonlinear PDE's 
520 3 |a The central issue hereby is a refinement condition with a refinement strategy that distributes spatial interpolation and discretization errors in such a way that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation. The analysis is confirmed with a numerical illustration. 
650 4 |a Differential equations, Partial 
650 4 |a Mathematical analysis 
700 1 |a Verwer, Jan  |e Verfasser  |4 aut 
810 2 |a Afdeling Numerieke Wiskunde: Report NM  |t Centrum voor Wiskunde en Informatica <Amsterdam>  |v 1990,11  |w (DE-604)BV010177152  |9 1990,11 
999 |a oai:aleph.bib-bvb.de:BVB01-006769435 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111/2001 B 6003-1990,11
DE-BY-TUM_katkey 653877
DE-BY-TUM_media_number 040010045320
_version_ 1816711713458749440
any_adam_object
author Trompert, Ron A.
Verwer, Jan
author_facet Trompert, Ron A.
Verwer, Jan
author_role aut
aut
author_sort Trompert, Ron A.
author_variant r a t ra rat
j v jv
building Verbundindex
bvnumber BV010188985
ctrlnum (OCoLC)23947185
(DE-599)BVBBV010188985
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02667nam a2200337 cb4500</leader><controlfield tag="001">BV010188985</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1990 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23947185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010188985</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trompert, Ron A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the implicit Euler local uniform grid refinement method</subfield><subfield code="c">R. A. Trompert ; J. G. Verwer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">43 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt; / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1990,11</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The subject of the paper belongs to the field of numerical solution of time-dependent partial differential equations. Attention is focussed on parabolic problems the solution of which possess sharp moving transitions in space and time, such as steep moving fronts and emerging and disappearing layers. An adaptive grid method is analysed that refines the space grid locally around sharp spatial transitions, so as to avoid discretization on a very fine grid over the entire physical domain. This method is based on the techniques called static-regridding and local uniform grid refinement. Static-regridding means that in the course of the time evolution the space grid is adapted at discrete times</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Local uniform grid refinement means that the actual adaptation of the space grid takes place using nested locally uniformly refined grids. These uniform subgrids possess non physical boundaries and on each of these subgrids an integration is carried out. The present paper concentrates on stability and error analysis while using the implicit Euler method for time integration. Maximum norm stability and convergence results are proved for a certain class of linear and nonlinear PDE's</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The central issue hereby is a refinement condition with a refinement strategy that distributes spatial interpolation and discretization errors in such a way that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation. The analysis is confirmed with a numerical illustration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verwer, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt;</subfield><subfield code="v">1990,11</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1990,11</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006769435</subfield></datafield></record></collection>
id DE-604.BV010188985
illustrated Not Illustrated
indexdate 2024-11-25T17:14:19Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006769435
oclc_num 23947185
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 43 S.
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
record_format marc
series2 Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
spellingShingle Trompert, Ron A.
Verwer, Jan
Analysis of the implicit Euler local uniform grid refinement method
Differential equations, Partial
Mathematical analysis
title Analysis of the implicit Euler local uniform grid refinement method
title_auth Analysis of the implicit Euler local uniform grid refinement method
title_exact_search Analysis of the implicit Euler local uniform grid refinement method
title_full Analysis of the implicit Euler local uniform grid refinement method R. A. Trompert ; J. G. Verwer
title_fullStr Analysis of the implicit Euler local uniform grid refinement method R. A. Trompert ; J. G. Verwer
title_full_unstemmed Analysis of the implicit Euler local uniform grid refinement method R. A. Trompert ; J. G. Verwer
title_short Analysis of the implicit Euler local uniform grid refinement method
title_sort analysis of the implicit euler local uniform grid refinement method
topic Differential equations, Partial
Mathematical analysis
topic_facet Differential equations, Partial
Mathematical analysis
volume_link (DE-604)BV010177152
work_keys_str_mv AT trompertrona analysisoftheimpliciteulerlocaluniformgridrefinementmethod
AT verwerjan analysisoftheimpliciteulerlocaluniformgridrefinementmethod