Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems

Abstract: "This paper studies the convergence of unfactored implicit schemes for the solution of the steady discrete Euler equations. In these schemes first and second order accurate discretisations are simultaneously used. The close resemblance of these schemes with iterative defect correction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Désidéri, Jean-Antoine (VerfasserIn), Hemker, Pieter W. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1990
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1990,4
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010187232
003 DE-604
005 19960228
007 t|
008 950518s1990 xx |||| 00||| engod
035 |a (OCoLC)23456858 
035 |a (DE-599)BVBBV010187232 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Désidéri, Jean-Antoine  |e Verfasser  |4 aut 
245 1 0 |a Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems  |c J.-A. Desideri ; P. W. Hemker 
264 1 |a Amsterdam  |c 1990 
300 |a 82 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM  |v 1990,4 
520 3 |a Abstract: "This paper studies the convergence of unfactored implicit schemes for the solution of the steady discrete Euler equations. In these schemes first and second order accurate discretisations are simultaneously used. The close resemblance of these schemes with iterative defect correction is shown. Linear model problems are introduced for the one-dimensional and the two-dimensional cases. These model problems are analyzed in detail both by Fourier and by matrix analyses. The convergence behaviour appears to be strongly dependent on a parameter [beta] that determines the amount of upwinding in the discretisation of the second order scheme 
520 3 |a In general, in the iteration, after an impulsive initial phase a slower psuedo-convective (or Fourier) phase can be distinguished, and finally again a faster asymptotic phase. The extreme parameter values [beta] = 0 (no upwinding) and [beta] = 1 (full second order upwinding) both appear as special cases for which the convergence behaviour degenerates. They are not recommended for practical use. For the intermediate values of [beta] the pseudo-convection phase is less significant. Fromm's scheme ([beta]=1/2) or van Leer's third order scheme ([beta]=1/3) show a quite satisfactory convergence behaviour. In this paper, first the linear convection problem in one and two dimensions is studied in detail 
520 3 |a Differences between the various cases are signalized. In the last section experiments are shown for the Euler equations, including comments on how the theory is well or partially verified depending on the problem. 
650 4 |a Lagrange equations 
700 1 |a Hemker, Pieter W.  |e Verfasser  |4 aut 
810 2 |a Afdeling Numerieke Wiskunde: Report NM  |t Centrum voor Wiskunde en Informatica <Amsterdam>  |v 1990,4  |w (DE-604)BV010177152  |9 1990,4 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006767883 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6003
DE-BY-TUM_katkey 653815
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010045400
_version_ 1820806328040292352
any_adam_object
author Désidéri, Jean-Antoine
Hemker, Pieter W.
author_facet Désidéri, Jean-Antoine
Hemker, Pieter W.
author_role aut
aut
author_sort Désidéri, Jean-Antoine
author_variant j a d jad
p w h pw pwh
building Verbundindex
bvnumber BV010187232
ctrlnum (OCoLC)23456858
(DE-599)BVBBV010187232
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02686nam a2200325 cb4500</leader><controlfield tag="001">BV010187232</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960228 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950518s1990 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23456858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010187232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Désidéri, Jean-Antoine</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems</subfield><subfield code="c">J.-A. Desideri ; P. W. Hemker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">82 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt; / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1990,4</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper studies the convergence of unfactored implicit schemes for the solution of the steady discrete Euler equations. In these schemes first and second order accurate discretisations are simultaneously used. The close resemblance of these schemes with iterative defect correction is shown. Linear model problems are introduced for the one-dimensional and the two-dimensional cases. These model problems are analyzed in detail both by Fourier and by matrix analyses. The convergence behaviour appears to be strongly dependent on a parameter [beta] that determines the amount of upwinding in the discretisation of the second order scheme</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In general, in the iteration, after an impulsive initial phase a slower psuedo-convective (or Fourier) phase can be distinguished, and finally again a faster asymptotic phase. The extreme parameter values [beta] = 0 (no upwinding) and [beta] = 1 (full second order upwinding) both appear as special cases for which the convergence behaviour degenerates. They are not recommended for practical use. For the intermediate values of [beta] the pseudo-convection phase is less significant. Fromm's scheme ([beta]=1/2) or van Leer's third order scheme ([beta]=1/3) show a quite satisfactory convergence behaviour. In this paper, first the linear convection problem in one and two dimensions is studied in detail</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Differences between the various cases are signalized. In the last section experiments are shown for the Euler equations, including comments on how the theory is well or partially verified depending on the problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hemker, Pieter W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt;</subfield><subfield code="v">1990,4</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1990,4</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006767883</subfield></datafield></record></collection>
id DE-604.BV010187232
illustrated Not Illustrated
indexdate 2025-01-08T13:44:32Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006767883
oclc_num 23456858
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 82 S.
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
record_format marc
series2 Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
spellingShingle Désidéri, Jean-Antoine
Hemker, Pieter W.
Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems
Lagrange equations
title Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems
title_auth Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems
title_exact_search Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems
title_full Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems J.-A. Desideri ; P. W. Hemker
title_fullStr Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems J.-A. Desideri ; P. W. Hemker
title_full_unstemmed Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems J.-A. Desideri ; P. W. Hemker
title_short Analysis of the convergence of iterative implicit and defect-correction algorithms for hyperbolic problems
title_sort analysis of the convergence of iterative implicit and defect correction algorithms for hyperbolic problems
topic Lagrange equations
topic_facet Lagrange equations
volume_link (DE-604)BV010177152
work_keys_str_mv AT desiderijeanantoine analysisoftheconvergenceofiterativeimplicitanddefectcorrectionalgorithmsforhyperbolicproblems
AT hemkerpieterw analysisoftheconvergenceofiterativeimplicitanddefectcorrectionalgorithmsforhyperbolicproblems