Improved techniques for lower bounds for odd perfect numbers

Abstract: "If N is an odd perfect number, and q[superscript k] [symbol] N, q prime, k even, then it is almost immediate that N > q[superscript 2k]. We prove here that, subject to certain conditions verifiable in polynomial time, in fact N > q[superscript 5k/2]. Using this and related resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brent, Richard P. 1946- (VerfasserIn), Cohen, G. L. (VerfasserIn), Riele, Herman J. te (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1989
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1989,21
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010185289
003 DE-604
005 00000000000000.0
007 t|
008 950517s1989 xx |||| 00||| engod
035 |a (OCoLC)22291138 
035 |a (DE-599)BVBBV010185289 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Brent, Richard P.  |d 1946-  |e Verfasser  |0 (DE-588)143984713  |4 aut 
245 1 0 |a Improved techniques for lower bounds for odd perfect numbers  |c R. P. Brent ; G. L. Cohen ; H. J. J. te Riele 
264 1 |a Amsterdam  |c 1989 
300 |a 13 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM  |v 1989,21 
520 3 |a Abstract: "If N is an odd perfect number, and q[superscript k] [symbol] N, q prime, k even, then it is almost immediate that N > q[superscript 2k]. We prove here that, subject to certain conditions verifiable in polynomial time, in fact N > q[superscript 5k/2]. Using this and related results, we are able to extend the computations in an earlier paper to show that N > 10[superscript 300]." 
650 4 |a Perfect numbers 
700 1 |a Cohen, G. L.  |e Verfasser  |4 aut 
700 1 |a Riele, Herman J. te  |e Verfasser  |4 aut 
810 2 |a Afdeling Numerieke Wiskunde: Report NM  |t Centrum voor Wiskunde en Informatica <Amsterdam>  |v 1989,21  |w (DE-604)BV010177152  |9 1989,21 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006766185 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6003
DE-BY-TUM_katkey 653724
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010000043
_version_ 1820806322949455872
any_adam_object
author Brent, Richard P. 1946-
Cohen, G. L.
Riele, Herman J. te
author_GND (DE-588)143984713
author_facet Brent, Richard P. 1946-
Cohen, G. L.
Riele, Herman J. te
author_role aut
aut
aut
author_sort Brent, Richard P. 1946-
author_variant r p b rp rpb
g l c gl glc
h j t r hjt hjtr
building Verbundindex
bvnumber BV010185289
ctrlnum (OCoLC)22291138
(DE-599)BVBBV010185289
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01510nam a2200313 cb4500</leader><controlfield tag="001">BV010185289</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950517s1989 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22291138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010185289</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brent, Richard P.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143984713</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved techniques for lower bounds for odd perfect numbers</subfield><subfield code="c">R. P. Brent ; G. L. Cohen ; H. J. J. te Riele</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt; / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1989,21</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "If N is an odd perfect number, and q[superscript k] [symbol] N, q prime, k even, then it is almost immediate that N &gt; q[superscript 2k]. We prove here that, subject to certain conditions verifiable in polynomial time, in fact N &gt; q[superscript 5k/2]. Using this and related results, we are able to extend the computations in an earlier paper to show that N &gt; 10[superscript 300]."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perfect numbers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohen, G. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riele, Herman J. te</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt;</subfield><subfield code="v">1989,21</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1989,21</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766185</subfield></datafield></record></collection>
id DE-604.BV010185289
illustrated Not Illustrated
indexdate 2024-12-23T13:52:55Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006766185
oclc_num 22291138
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 13 S.
publishDate 1989
publishDateSearch 1989
publishDateSort 1989
record_format marc
series2 Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
spellingShingle Brent, Richard P. 1946-
Cohen, G. L.
Riele, Herman J. te
Improved techniques for lower bounds for odd perfect numbers
Perfect numbers
title Improved techniques for lower bounds for odd perfect numbers
title_auth Improved techniques for lower bounds for odd perfect numbers
title_exact_search Improved techniques for lower bounds for odd perfect numbers
title_full Improved techniques for lower bounds for odd perfect numbers R. P. Brent ; G. L. Cohen ; H. J. J. te Riele
title_fullStr Improved techniques for lower bounds for odd perfect numbers R. P. Brent ; G. L. Cohen ; H. J. J. te Riele
title_full_unstemmed Improved techniques for lower bounds for odd perfect numbers R. P. Brent ; G. L. Cohen ; H. J. J. te Riele
title_short Improved techniques for lower bounds for odd perfect numbers
title_sort improved techniques for lower bounds for odd perfect numbers
topic Perfect numbers
topic_facet Perfect numbers
volume_link (DE-604)BV010177152
work_keys_str_mv AT brentrichardp improvedtechniquesforlowerboundsforoddperfectnumbers
AT cohengl improvedtechniquesforlowerboundsforoddperfectnumbers
AT rielehermanjte improvedtechniquesforlowerboundsforoddperfectnumbers