A comparison of additivity axioms in timed transition systems

Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jeffrey, Alan S. (VerfasserIn), Schneider, Steve A. (VerfasserIn), Vaandrager, Frits W. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1993
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,66
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010177411
003 DE-604
005 00000000000000.0
007 t
008 950511s1993 |||| 00||| engod
035 |a (OCoLC)31911767 
035 |a (DE-599)BVBBV010177411 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
100 1 |a Jeffrey, Alan S.  |e Verfasser  |4 aut 
245 1 0 |a A comparison of additivity axioms in timed transition systems  |c A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager 
264 1 |a Amsterdam  |c 1993 
300 |a 19 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS  |v 93,66 
520 3 |a Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation." 
650 7 |a Mathematics  |2 sigle 
650 4 |a Mathematik 
650 4 |a Real-time data processing 
700 1 |a Schneider, Steve A.  |e Verfasser  |4 aut 
700 1 |a Vaandrager, Frits W.  |e Verfasser  |4 aut 
810 2 |a Department of Computer Science: Report CS  |t Centrum voor Wiskunde en Informatica <Amsterdam>  |v 93,66  |w (DE-604)BV008928356  |9 93,66 
999 |a oai:aleph.bib-bvb.de:BVB01-006759949 

Datensatz im Suchindex

_version_ 1804124575215124480
any_adam_object
author Jeffrey, Alan S.
Schneider, Steve A.
Vaandrager, Frits W.
author_facet Jeffrey, Alan S.
Schneider, Steve A.
Vaandrager, Frits W.
author_role aut
aut
aut
author_sort Jeffrey, Alan S.
author_variant a s j as asj
s a s sa sas
f w v fw fwv
building Verbundindex
bvnumber BV010177411
ctrlnum (OCoLC)31911767
(DE-599)BVBBV010177411
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01953nam a2200325 cb4500</leader><controlfield tag="001">BV010177411</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950511s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31911767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010177411</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jeffrey, Alan S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparison of additivity axioms in timed transition systems</subfield><subfield code="c">A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt; / Department of Computer Science: Report CS</subfield><subfield code="v">93,66</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Steve A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaandrager, Frits W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica &lt;Amsterdam&gt;</subfield><subfield code="v">93,66</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">93,66</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006759949</subfield></datafield></record></collection>
id DE-604.BV010177411
illustrated Not Illustrated
indexdate 2024-07-09T17:47:50Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006759949
oclc_num 31911767
open_access_boolean
physical 19 S.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
record_format marc
series2 Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
spelling Jeffrey, Alan S. Verfasser aut
A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager
Amsterdam 1993
19 S.
txt rdacontent
n rdamedia
nc rdacarrier
Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,66
Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation."
Mathematics sigle
Mathematik
Real-time data processing
Schneider, Steve A. Verfasser aut
Vaandrager, Frits W. Verfasser aut
Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 93,66 (DE-604)BV008928356 93,66
spellingShingle Jeffrey, Alan S.
Schneider, Steve A.
Vaandrager, Frits W.
A comparison of additivity axioms in timed transition systems
Mathematics sigle
Mathematik
Real-time data processing
title A comparison of additivity axioms in timed transition systems
title_auth A comparison of additivity axioms in timed transition systems
title_exact_search A comparison of additivity axioms in timed transition systems
title_full A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager
title_fullStr A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager
title_full_unstemmed A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager
title_short A comparison of additivity axioms in timed transition systems
title_sort a comparison of additivity axioms in timed transition systems
topic Mathematics sigle
Mathematik
Real-time data processing
topic_facet Mathematics
Mathematik
Real-time data processing
volume_link (DE-604)BV008928356
work_keys_str_mv AT jeffreyalans acomparisonofadditivityaxiomsintimedtransitionsystems
AT schneiderstevea acomparisonofadditivityaxiomsintimedtransitionsystems
AT vaandragerfritsw acomparisonofadditivityaxiomsintimedtransitionsystems