A comparison of additivity axioms in timed transition systems
Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
93,66 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010177411 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950511s1993 |||| 00||| engod | ||
035 | |a (OCoLC)31911767 | ||
035 | |a (DE-599)BVBBV010177411 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Jeffrey, Alan S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A comparison of additivity axioms in timed transition systems |c A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 19 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 93,66 | |
520 | 3 | |a Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation." | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Real-time data processing | |
700 | 1 | |a Schneider, Steve A. |e Verfasser |4 aut | |
700 | 1 | |a Vaandrager, Frits W. |e Verfasser |4 aut | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 93,66 |w (DE-604)BV008928356 |9 93,66 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006759949 |
Datensatz im Suchindex
_version_ | 1804124575215124480 |
---|---|
any_adam_object | |
author | Jeffrey, Alan S. Schneider, Steve A. Vaandrager, Frits W. |
author_facet | Jeffrey, Alan S. Schneider, Steve A. Vaandrager, Frits W. |
author_role | aut aut aut |
author_sort | Jeffrey, Alan S. |
author_variant | a s j as asj s a s sa sas f w v fw fwv |
building | Verbundindex |
bvnumber | BV010177411 |
ctrlnum | (OCoLC)31911767 (DE-599)BVBBV010177411 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01953nam a2200325 cb4500</leader><controlfield tag="001">BV010177411</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950511s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31911767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010177411</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jeffrey, Alan S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparison of additivity axioms in timed transition systems</subfield><subfield code="c">A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">93,66</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Steve A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaandrager, Frits W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">93,66</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">93,66</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006759949</subfield></datafield></record></collection> |
id | DE-604.BV010177411 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:47:50Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006759949 |
oclc_num | 31911767 |
open_access_boolean | |
physical | 19 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Jeffrey, Alan S. Verfasser aut A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager Amsterdam 1993 19 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 93,66 Abstract: "This paper discusses some axioms from the literature which have been used to define properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some conditions for an additive transition system to be trajectoried are discussed. These are proved sufficient by using some simple terminology from category theory to show how this problem about timed transition systems can be turned into an equivalent problem about monotone functions on partially ordered sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart's path bisimulation, and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation." Mathematics sigle Mathematik Real-time data processing Schneider, Steve A. Verfasser aut Vaandrager, Frits W. Verfasser aut Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 93,66 (DE-604)BV008928356 93,66 |
spellingShingle | Jeffrey, Alan S. Schneider, Steve A. Vaandrager, Frits W. A comparison of additivity axioms in timed transition systems Mathematics sigle Mathematik Real-time data processing |
title | A comparison of additivity axioms in timed transition systems |
title_auth | A comparison of additivity axioms in timed transition systems |
title_exact_search | A comparison of additivity axioms in timed transition systems |
title_full | A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager |
title_fullStr | A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager |
title_full_unstemmed | A comparison of additivity axioms in timed transition systems A. S. A. Jeffrey ; S. A. Schneider ; F. W. Vaandrager |
title_short | A comparison of additivity axioms in timed transition systems |
title_sort | a comparison of additivity axioms in timed transition systems |
topic | Mathematics sigle Mathematik Real-time data processing |
topic_facet | Mathematics Mathematik Real-time data processing |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT jeffreyalans acomparisonofadditivityaxiomsintimedtransitionsystems AT schneiderstevea acomparisonofadditivityaxiomsintimedtransitionsystems AT vaandragerfritsw acomparisonofadditivityaxiomsintimedtransitionsystems |