Optimal control theory for infinite dimensional systems

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Xunjing (VerfasserIn), Yong, Jiongmin 1958- (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: Boston u.a. Birkhäuser 1995
Schriftenreihe:Systems & control
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV010163740
003 DE-604
005 20031124
007 t|
008 950424s1995 gw |||| 00||| ger d
016 7 |a 943513154  |2 DE-101 
020 |a 3764337222  |c (Basel ...) Pp. : sfr 168.00  |9 3-7643-3722-2 
020 |a 0817637222  |c (Boston ...) Pp.  |9 0-8176-3722-2 
035 |a (OCoLC)246810963 
035 |a (DE-599)BVBBV010163740 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-91G  |a DE-12  |a DE-29T  |a DE-634  |a DE-11 
082 0 |a 515.64 
084 |a SK 880  |0 (DE-625)143266:  |2 rvk 
084 |a MAT 496f  |2 stub 
100 1 |a Li, Xunjing  |e Verfasser  |4 aut 
245 1 0 |a Optimal control theory for infinite dimensional systems  |c Xunjing Li ; Jiongmin Yong 
264 1 |a Boston u.a.  |b Birkhäuser  |c 1995 
300 |a XII, 448 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Systems & control 
500 |a Literaturverz. S. 419 - 441 
650 0 7 |a Optimale Kontrolle  |0 (DE-588)4121428-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Unendlichdimensionales System  |0 (DE-588)4207956-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Unendlichdimensionales System  |0 (DE-588)4207956-1  |D s 
689 0 1 |a Optimale Kontrolle  |0 (DE-588)4121428-6  |D s 
689 0 |5 DE-604 
700 1 |a Yong, Jiongmin  |d 1958-  |e Verfasser  |0 (DE-588)121010481  |4 aut 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006749743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006749743 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 496f 2001 A 22739
DE-BY-TUM_katkey 652527
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010366679
_version_ 1820891445235548160
adam_text XUNJING LI JIONGMIN YONG OPTIMAL CONTROL THEORY FOR INFINITE DIMENSIONAL SYSTEMS BIRKHAUSER BOSTON * BASEL * BERLIN CONTENTS PREFACE IX CHAPTER 1. CONTROL PROBLEMS IN INFINITE DIMENSIONS 1 §1. DIFFUSION PROBLEMS 1 §2. VIBRATION PROBLEMS 5 §3. POPULATION DYNAMICS 8 §4. FLUID DYNAMICS 12 §5. FREE BOUNDARY PROBLEMS 15 REMARKS 22 CHAPTER 2. MATHEMATICAL PRELIMINARIES 24 §1. ELEMENTS IN FUNCTIONAL ANALYSIS 24 §1.1. SPACES 24 §1.2. LINEAR OPERATORS 27 §1.3. LINEAR FUNCTIONAL AND DUAL SPACES 28 §1.4. ADJOINT OPERATORS 31 §1.5. SPECTRAL THEORY 32 §1:6. COMPACT OPERATORS 33 §2. SOME GEOMETRIC ASPECTS OF BANACH SPACES 36 §2.1. CONVEX SETS 36 §2.2. CONVEXITY OF BANACH SPACES 41 §3. BANACH SPACE VALUED FUNCTIONS 45 §3.1. MEASURABILITY AND INTEGRABILITY 45 §3.2. CONTINUITY AND DIFFERENTIABILITY 47 §4. THEORY OF C O SEMIGROUPS 49 §4.1. UNBOUNDED OPERATORS 49 §4.2. CO SEMIGROUPS 52 §4.3. SPECIAL TYPES OF CO SEMIGROUPS 55 §4.4. EXAMPLES 57 §5. EVOLUTION EQUATIONS 63 §5.1. SOLUTIONS 63 §5.2. SEMILINEAR EQUATIONS 66 §5.3. VARIATION OF CONSTANTS FORMULA 68 §6. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 71 §6.1. SOBOLEV SPACES 71 §6.2. LINEAR ELLIPTIC EQUATIONS 75 §6.3. SEMILINEAR ELLIPTIC EQUATIONS 78 REMARKS 80 CHAPTER 3. EXISTENCE THEORY OF OPTIMAL CONTROLS 81 §1. SOUSLIN SPACE 81 VI CONTENTS §1.1. POLISH SPACE 81 §1.2. SOUSLIN SPACE 84 §1.3. CAPACITY AND CAPACITABILITY 86 §2. MULTIFUNCTIONS AND SELECTION THEOREMS 89 §2.1. CONTINUITY 89 §2.2. MEASURABILITY 94 §2.3. MEASURABLE SELECTION THEOREMS 100 §3. EVOLUTION SYSTEMS WITH COMPACT SEMIGROUPS 109 §4. EXISTENCE OF FEASIBLE PAIRS AND OPTIMAL PAIRS 106 §4.1. CESARI PROPERTY 106 §4.2. EXISTENCE THEOREMS 110 §5. SECOND ORDER EVOLUTION SYSTEMS 113 §5.1. FORMULATION OF THE PROBLEM 113 §5.2. EXISTENCE OF OPTIMAL CONTROLS 118 §6. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND VARIATIONAL INEQUALITIES 121 REMARKS 129 CHAPTER 4. NECESSARY CONDITIONS FOR OPTIMAL CONTROLS * ABSTRACT EVOLUTION EQUATIONS 130 §1. FORMULATION OF THE PROBLEM 130 §2. EKELAND VARIATIONAL PRINCIPLE 135 §3. OTHER PRELIMINARY RESULTS 137 §3.1. FINITE CODIMENSIONALITY 137 §3.2. PRELIMINARIES FOR SPIKE PERTURBATION 143 §3.3. THE DISTANCE FUNCTION 146 §4. PROOF OF THE MAXIMUM PRINCIPLE 150 §5. APPLICATIONS 159 REMARKS 165 CHAPTER 5. NECESSARY CONDITIONS FOR OPTIMAL CONTROLS * ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 168 §1. SEMILINEAR ELLIPTIC EQUATIONS 168 §1.1. OPTIMAL CONTROL PROBLEM AND THE MAXIMUM PRINCIPLE 168 §1.2. THE STATE CONSTRAINTS 171 §2. VARIATION ALONG FEASIBLE PAIRS 175 §3. PROOF OF THE MAXIMUM PRINCIPLE 179 §4. VARIATIONAL INEQUALITIES 183 §4.1. STABILITY OF THE OPTIMAL COST 184 §4.2. APPROXIMATE CONTROL PROBLEMS 185 §4.3. MAXIMUM PRINCIPLE AND ITS PROOF 188 §5. QUASILINEAR EQUATIONS 191 §5.1. THE STATE EQUATION AND THE OPTIMAL CONTROL PROBLEM 191 CONTENTS VII §5.2. THE MAXIMUM PRINCIPLE 196 §6. MINIMAX CONTROL PROBLEM 197 §6.1. STATEMENT OF THE PROBLEM 197 §6.2. REGULARIZATION OF THE COST FUNCTIONAL 199 §6.3. NECESSARY CONDITIONS FOR OPTIMAL CONTROLS 200 §7. BOUNDARY CONTROL PROBLEMS 207 §7.1. FORMULATION OF THE PROBLEM 207 §7.2. STRONG STABILITY AND THE QUALIFIED MAXIMUM PRINCIPLE 209 §7.3. NEUMANN PROBLEM WITH MEASURE DATA 212 §7.4. EXACT PENALIZATION AND A PROOF OF THE MAXIMUM PRINCIPLE 214 REMARKS 220 CHAPTER 6. DYNAMIC PROGRAMMING METHOD FOR EVOLUTION SYSTEMS 223 §1. OPTIMALITY PRINCIPLE AND HAMILTON-JACOBI- BELLMAN EQUATIONS 223 §2. PROPERTIES OF THE VALUE FUNCTIONS 227 §2.1. CONTINUITY 228 §2.2. B-CONTINUITY 231 §2.3. SEMI-CONCAVITY 234 §3. VISCOSITY SOLUTIONS 239 §4. UNIQUENESS OF VISCOSITY SOLUTIONS 244 §4.1. A PERTURBED OPTIMIZATION LEMMA 244 §4.2. THE HILBERT SPACE X A 248 §4.3. A UNIQUENESS THEOREM 250 §5. RELATION TO MAXIMUM PRINCIPLE AND OPTIMAL SYNTHESIS 256 §6. INFINITE HORIZON PROBLEMS 264 REMARKS 272 CHAPTER 7. CONTROLLABILITY AND TIME OPTIMAL CONTROL 274 §1. DEFINITIONS OF CONTROLLABILITY 274 §2. CONTROLLABILITY FOR LINEAR SYSTEMS 278 §2.1. APPROXIMATE CONTROLLABILITY 279 §2.2. EXACT CONTROLLABILITY 282 §3. APPROXIMATE CONTROLLABILITY FOR SEMILINEAR SYSTEMS 286 §4. TIME OPTIMAL CONTROL * SEMILINEAR SYSTEMS 294 §4.1. NECESSARY CONDITIONS FOR TIME OPTIMAL PAIRS 294 §4.2. THE MINIMUM TIME FUNCTION 299 §5. TIME OPTIMAL CONTROL * LINEAR SYSTEMS 302 §5.1. CONVEXITY OF THE REACHABLE SET 303 §5.2. ENCOUNTER OF MOVING SETS 308 §5.3. TIME OPTIMAL CONTROL 315 REMARKS 317 VIII CONTENTS CHAPTER 8. OPTIMAL SWITCHING AND IMPULSE CONTROLS 319 §1. SWITCHING AND IMPULSE CONTROLS 319 §2. PRELIMINARY RESULTS 322 §3. PROPERTIES OF THE VALUE FUNCTION 328 §4. OPTIMALITY PRINCIPLE AND THE HJB EQUATION 331 §5. CONSTRUCTION OF AN OPTIMAL CONTROL 334 §6. APPROXIMATION OF THE CONTROL PROBLEM 338 §7. VISCOSITY SOLUTIONS 344 §8. PROBLEM IN FINITE HORIZON 352 REMARKS 359 CHAPTER 9. LINEAR QUADRATIC OPTIMAL CONTROL PROBLEMS 361 §1. FORMULATION OF THE PROBLEM 361 §1.1. EXAMPLES OF UNBOUNDED CONTROL PROBLEMS 361 §1.2. THE LQ PROBLEM 366 §2. WELL-POSEDNESS AND SOLVABILITY 371 §3. STATE FEEDBACK CONTROL 379 §3.1. TWO-POINT BOUNDARY VALUE PROBLEM 379 §3.2. THE PROBLEM (LQ) T 382 §3.3. A FREDHOLM INTEGRAL EQUATION 386 §3.4. STATE FEEDBACK REPRESENTATION OF OPTIMAL CONTROLS 391 §4. RICCATI INTEGRAL EQUATION 395 §5. PROBLEM IN INFINITE HORIZON 401 §5.1. REDUCTION OF THE PROBLEM 401 §5.2. WELL-POSEDNESS AND SOLVABILITY 405 §5.3. ALGEBRAIC RICCATI EQUATION 407 §5.4. THE POSITIVE REAL LEMMA 408 §5.5. FEEDBACK STABILIZATION 412 §5.6. FREDHOLM INTEGRAL EQUATION AND RICCATI INTEGRAL EQUATION 414 REMARKS 415 REFERENCES 419 INDEX 443
any_adam_object 1
author Li, Xunjing
Yong, Jiongmin 1958-
author_GND (DE-588)121010481
author_facet Li, Xunjing
Yong, Jiongmin 1958-
author_role aut
aut
author_sort Li, Xunjing
author_variant x l xl
j y jy
building Verbundindex
bvnumber BV010163740
classification_rvk SK 880
classification_tum MAT 496f
ctrlnum (OCoLC)246810963
(DE-599)BVBBV010163740
dewey-full 515.64
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.64
dewey-search 515.64
dewey-sort 3515.64
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01691nam a2200433 c 4500</leader><controlfield tag="001">BV010163740</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031124 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950424s1995 gw |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">943513154</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764337222</subfield><subfield code="c">(Basel ...) Pp. : sfr 168.00</subfield><subfield code="9">3-7643-3722-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817637222</subfield><subfield code="c">(Boston ...) Pp.</subfield><subfield code="9">0-8176-3722-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246810963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010163740</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 496f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xunjing</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal control theory for infinite dimensional systems</subfield><subfield code="c">Xunjing Li ; Jiongmin Yong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 448 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Systems &amp; control</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 419 - 441</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yong, Jiongmin</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121010481</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006749743&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006749743</subfield></datafield></record></collection>
id DE-604.BV010163740
illustrated Not Illustrated
indexdate 2024-12-23T13:52:31Z
institution BVB
isbn 3764337222
0817637222
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006749743
oclc_num 246810963
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-12
DE-29T
DE-634
DE-11
owner_facet DE-91G
DE-BY-TUM
DE-12
DE-29T
DE-634
DE-11
physical XII, 448 S.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Birkhäuser
record_format marc
series2 Systems & control
spellingShingle Li, Xunjing
Yong, Jiongmin 1958-
Optimal control theory for infinite dimensional systems
Optimale Kontrolle (DE-588)4121428-6 gnd
Unendlichdimensionales System (DE-588)4207956-1 gnd
subject_GND (DE-588)4121428-6
(DE-588)4207956-1
title Optimal control theory for infinite dimensional systems
title_auth Optimal control theory for infinite dimensional systems
title_exact_search Optimal control theory for infinite dimensional systems
title_full Optimal control theory for infinite dimensional systems Xunjing Li ; Jiongmin Yong
title_fullStr Optimal control theory for infinite dimensional systems Xunjing Li ; Jiongmin Yong
title_full_unstemmed Optimal control theory for infinite dimensional systems Xunjing Li ; Jiongmin Yong
title_short Optimal control theory for infinite dimensional systems
title_sort optimal control theory for infinite dimensional systems
topic Optimale Kontrolle (DE-588)4121428-6 gnd
Unendlichdimensionales System (DE-588)4207956-1 gnd
topic_facet Optimale Kontrolle
Unendlichdimensionales System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006749743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT lixunjing optimalcontroltheoryforinfinitedimensionalsystems
AT yongjiongmin optimalcontroltheoryforinfinitedimensionalsystems