Enabling technologies for cultured neural networks

Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: San Diego u.a. Acad. Press 1994
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV010117553
003 DE-604
005 19950328
007 t|
008 950328s1994 xx ad|| |||| 00||| engod
020 |a 0126659702  |9 0-12-665970-2 
035 |a (OCoLC)29954489 
035 |a (DE-599)BVBBV010117553 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355 
050 0 |a QP363.3 
082 0 |a 599/.0188  |2 20 
084 |a WX 6600  |0 (DE-625)152214:13423  |2 rvk 
245 1 0 |a Enabling technologies for cultured neural networks  |c ed. by Daniel A. Stenger ... 
264 1 |a San Diego u.a.  |b Acad. Press  |c 1994 
300 |a XX, 355 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
520 3 |a Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiology. Topics addressed include the isolation and controlled survival, growth, and physiology of cultured mammalian neurons, including geometric growth of neurons; improved, noninvasive neuronal stimulation and recording methods, including advanced microelectrode and optical techniques; and theoretical and experimental frameworks for modeling and analyzing data. This text will prove important to neuron culture students and researchers; to neuroscientists seeking new information on techniques applicable to preparations other than cultured neurons; to chemists interested in biological interfaces; and to biomedical engineers interested in the interdisciplinary nature of the field. 
650 7 |a Neurones  |2 ram 
650 4 |a Cell Culture Techniques 
650 4 |a Cell culture 
650 4 |a Nerve Net 
650 4 |a Neural Pathways 
650 4 |a Neural circuitry 
650 4 |a Neural networks (Neurobiology) 
650 4 |a Neurons 
650 0 7 |a Nervenzelle  |0 (DE-588)4041649-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Zellkultur  |0 (DE-588)4067547-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Nervennetz  |0 (DE-588)4041638-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Nervenzelle  |0 (DE-588)4041649-5  |D s 
689 0 1 |a Zellkultur  |0 (DE-588)4067547-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Nervennetz  |0 (DE-588)4041638-0  |D s 
689 1 1 |a Zellkultur  |0 (DE-588)4067547-6  |D s 
689 1 |5 DE-604 
700 1 |a Stenger, David A.  |e Sonstige  |4 oth 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006718064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006718064 

Datensatz im Suchindex

_version_ 1819691716874076160
adam_text Enabling Technologies for Cultured Neural Networks Edited by David A Stenger Center for Bio/molecular Engineering Naval Research Laboratory Washington, D C Thomas M McKenna Division of Cognitive and Neural Sciences Office of Naval Research Arlington, Virginia ACADEMIC PRESS San Diego New York Boston London Sydney Tokyo Toronto Contents Contributors xv Preface xix ONE Controlled Growth of Neurons 1 Toward Establishing Neural Networks in Culture Carl W Cotman, David H Cribbs, and Jennifer Kahle I Introduction 3 II Basic Requirements Necessary for Developing an in Vitro Neural Network 4 Contents III Defined Media Exist to Support Primary Neurons and Astrocytes in Neural Networks 6 A Neurons 6 B Astrocytes 7 IV Homogeneous Neuronal Culture Systems Exist for Reconstructing Specific Neuronal Circuitry in Vitro 7 V Two Major Requirements for Neuronal Survival and Growth Are Neurotrophic Factors and Substrates 8 A Neurotrophic Factors 9 B Substrates 10 VI Techniques Exist to Activate Neural Networks Selectively 11 VII Techniques Exist to Monitor Electrical, Structural, and Metabolic Changes with a High Level of Resolution 12 VIII Cultured Neurons Replicate in Vivo Synaptic Events 14 IX Cultured Neurons Exhibit Synaptic Analogies of Learning 16 X Neurons Can Be Directed to Establish Patterns in Culture 17 XI Conclusion 19 References 20 2 Isolating Embryonic Cerebral Cortical Neuron Subpopu- lations on a Multistep Buoyant-Density Gradient Irina Marie, Dragan Marie, and Jeffery L Barker I Introduction 23 II Rapid Fractionation of Embryonic Rat Cerebral Cortical Cells Using Percoll Density Gradient 24 A Preparation of Percoll Gradient 24 B Cell Preparation 25 III Characterization of Fractionated Subpopulations of Cells 25 A Distribution 25 B Morphology 26 C 5-Bromo-2 -deoxyuridine Incorporation 28 D Immunocytochemistry 29 Contents Wi IV Conclusion 31 References 32 3 Culturing Neural Networks Philip E Hockberger, Darlene K Racker, and James C Houk I Introduction 35 II Rationale for Culturing Neural Networks 36 III New Techniques for Culturing Neural Networks 37 A Brain Slice Cultures 37 B Cocultures 38 C Constructing Dissociated Cell Networks 39 D Multisite Recording in Cultures 40 IV Culturing the Limb Premotor Network 41 A Premotor Network Involves Feedback Loops 41 B Cerebello—Rubro-Reticular Loop 43 C Constructing the CRR Circuit in Culture 44 V Conclusions 45 References 45 4 Interactions of Cultured Neurons with Defined Surfaces James J Hickman and David A Stenger I Introduction 51 II Methods 56 A Chemicals and Film Formation 56 B Surface Analysis 57 C Cell Culture 57 HI Results 58 A Compositional Control of Surface Properties 58 B Characterization of Aminosilane Surfaces by Surface Spectroscopy and Neuronal Culture 62 C Hippocampal Neuron Adhesion and Outgrowth 65 D Model Studies on Macromolecular Adsorption to Substrates 69 IV Discussion 69 References 74 Contents 5 Lithographic Definition of Neuronal Microcircuits David A Stenger and James J Hickman I Introduction 77 A Background 77 B Objectives 79 C Future Opportunities 80 II Deep UV Lithographic Patterning of Hippocampal Neurons 80 A Initial Attempts 80 B Second-Generation Masks and Patterning Strategies 84 C Present Limitations 87 III Future Directions 87 A Definition of Axonal/Dendritic Polarity and Physiological Relevancy 87 B Selective Placement of Neuronal Phenotypes 88 C Advanced Lithographic Methods 89 IV Summary 92 References 92 TWO Neuronal Stimulation/ Recording Technology 6 Living Nerve Nets Adam Curtis, Chris Wilkinson, and Lorna Breckenridge I Introduction 99 II Recording Systems 100 III Stimulation Systems 101 IV Control of Connection Pattern 102 V The Use of Microfabrication 106 A General Remarks 106 B Microfabrication Techniques 106 C Control of Cell Shape and Neurite Extension 108 D Control of Dendritization 110 E Control of Synapse Formation 110 F Circuit Building to Plan 110 G Electrodes 110 Contents IX VI Results 111 A Signal Detection 111 B Stimulation 114 C Multisite Recording from One Cell 114 D Reconstructing Circuits 115 VII Conclusions and Prospects 117 References 118 7 Introduction to the Theory, Design, and Modeling of Thin- Film Microelectrodes for Neural Interfaces Gregory T A Kovacs I Introduction 121 II The Electrode as a Transducer 122 III Trie Electrode/Electrolyte Interface 124 A The Space Charge Layer near an Electrode in Solution 124 IV The Interfacial Capacitance 125 V Charge Transfer: Resistive Mechanisms 131 A Charge Transfer Resistance 132 B Electrode Polarization 135 VI Impedance Effects Due to Diffusion 137 A Steady-State Diffusion Resistance 137 B Impedance Due to Diffusion under AC Conditions 138 VII Chemistry at the Interface: Reversible and Irreversible 140 VIII Spreading Resistance 142 IX Summary of Theoretical Model 143 X Thin-Film Microelectrode Structures 144 A Planar Thin-Film Microelectrodes 145 B Basic Thin-Film Microelectrode Designs 147 C Nonplanar Microelectrode Structures 147 XI Nanostructured Surfaces 151 A Metal Powder Deposition 151 B Surface Etching 152 C Circuit Model Extension for Porous Surfaces 153 D Chemical Modification of Microelectrode Surfaces 155 XII Parasitic Circuit Elements of Thin-Film Microelectrodes 156 A Resistance of Interconnects 157 Contents B Capacitance to Electrolyte through Passiva- tion Layer 158 C Substrate Capacitance 159 D Coupling Capacitance 159 XIII Extended Microelectrode Circuit Model 160 XIV Conclusions 161 References 162 8 Multineuron Patterning and Recording Bruce C Wheeler and Gregory J Brewer 1 Introduction 167 II Technologies for Controlled Growth of Neural Cultures 169 A Laser Ablation of Polylysine 169 B Covalently Bound Aminosilane Patterns on Silicon Nitride 172 III Cell Culture 175 IV Planar Electrode Arrays for Neural Recording V Signal Processing 181 VI Scientific Applications and Questions 183 References 184 9 Optical Recording from Neural Populations in Vitro: Application of Laser Scanning Microscopy Peter Saggau I Introduction 187 II Fundamentals of Optical Recording of Neural Activity 188 A Principles of Light Microscopy Relevant for Optical Recording Techniques 190 B Principles of Scanning Microscopy for Opti- cal Recording Techniques 191 C Specification of Laser Scanning Microscopy for Recording Neural Activity 193 III Computer-Controlled Laser Scanning System for Optical Recording of Neural Activity 195 A System Components 195 B System Performance 198 IV Application of Laser Scanning Microscopy to a Neural Population in Vitro 199 A Methods 199 B Results 199 V Summary and Conclusions 204 References 205 tO Calcium Imaging of Cortical Circuits in Slices of Developing Neocortex Rafael Yuste I Introduction 207 II Methods: Fura-2 Imaging of Slices of Developing Neocortex 208 A Optical Recording of Neuronal Populations with Calcium Indicators 208 B Slices: Advantages and Disadvantages 209 C Loading and Its Limitations 210 D Fura-2: General Properties 212 E Imaging: Video Microscopy 213 F Quantification of Data: Calibrations 215 G Cell Identity 218 III Experimental Design and Analysis: Neuronal Domains in Developing Neocortex 219 A Development of Cortical Columnar Microcircuitry 219 B Local Correlations of Spontaneous [Ca2+]i Changes: Neuronal Domains 220 References 231 THREE Modeling and Data Analysis from Neuronal Networks in Vitro 11 Role of Electrical Activity in Formation of Neuronal Networks R Douglas Fields and Phillip G Nelson I Introduction 237 A Network Formation and Remodeling 237 B Multicompartmental Cell Culture 238 II Synapse Formation 239 A Action Potentials Inhibit Growth Cone Motility 241 B Growth Cones Respond to Specific Patterns of Stimulation 244 C Growth Cones Can Accommodate the Inhibi- tory Effects of Electrical Stimulation 245 III Synapse Elimination 245 A Synaptic Activity Causes Synapse Elimination in Culture 246 B Synapse Elimination from the Neuro- muscular Junction Does Not Follow Hebbian Rules 247 C Spatial Effect of Activity-Dependent Synapse Elimination 248 IV Changes in Synaptic Strength 249 A N-Methyl-D-aspartic Acid Channels in Synaptic Plasticity 251 B Influence of Spontaneous Network Activity in Synaptic Plasticity 251 V Physiology of Calcium Signaling 252 A Electrical Activity Produces Effects on Growth Cone Motility through Changes in Intra- cellular Calcium 252 B Restoration of Free Calcium Levels during Trains of Action Potentials 254 C Chronic Stimulation Reduces the Rate of Calcium Influx 254 D Calcium and Synaptic Plasticity 255 VI Conclusions 256 References 257 12 Bioiogical Simulators: Computer Modification of Neuro- nal Conductances and Formation of Novel Networks Eve Marder, L F Abbott, Gwendal LeMasson, Michael B O Niel, Sylvie Renaud-LeMasson, and Andrew A Sharp I Introduction 261 A Studies in Invertebrate Ganglia 262 B Computational and Neural Network Analyses 262 C Studies of Networks Formed in Culture 262 II Analog Circuit to Create an Artificial Electrical Synapse 263 III Artificial Conductances 265 A Simulating a Ligand-Gated Conductance 267 B Simulating a Voltage-Dependent Conductance 267 C Simulating a Voltage- and Ligand-Dependent Conductance 269 IV Artificial Synapses 269 V Connecting Model Neurons to Biological Neurons 272 VI Conclusions 272 References 274 13 Internal Dynamics of Randomized Mammalian Neuronal Networks in Culture Guenter W Gross I Simplified Systems in Cell Culture: Rationale and Sig- nificance 277 A Complexities of Network Research 277 B Internal Network Dynamics 279 II Summary of Experimental Approaches 280 III Characteristics of Randomized Networks in Culture 288 A Native Spontaneous Activity 288 B Pharmacologically Induced Activity Changes in Spinal Cultures 298 C Electrically Induced Activity Changes 303 IV Network States and Activity Modes 304 A Practical Descriptions and Definitions for Networks in Culture 304 B Determination of Network States and Activity Modes 306 V Conclusions 310 A Advantages Provided by Isolated, Generalized Networks 310 B The Ubiquity of Bursting 311 C Emergent Properties 312 References 313 14 Extraction of Dynamical Changes in Neuronal Network Circuitries Using Multi-Unit Spike Train Analysis David C Tarn and Guenter W Gross I Introduction 319 II Methods 322 A Experimental Procedures 322 B Experimental Setup 322 C Statistical Methods 323 W Contents III Results 323 A Spike Train Analysis 323 B Interspike Interval Analysis 327 C Joint-Interspike Interval Analysis 330 D Conditional Cross-Interspike Interval Analysis 336 IV Discussion 342 References 344 Index 347
any_adam_object 1
building Verbundindex
bvnumber BV010117553
callnumber-first Q - Science
callnumber-label QP363
callnumber-raw QP363.3
callnumber-search QP363.3
callnumber-sort QP 3363.3
callnumber-subject QP - Physiology
classification_rvk WX 6600
ctrlnum (OCoLC)29954489
(DE-599)BVBBV010117553
dewey-full 599/.0188
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 599 - Mammalia
dewey-raw 599/.0188
dewey-search 599/.0188
dewey-sort 3599 3188
dewey-tens 590 - Animals
discipline Biologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02787nam a2200517 c 4500</leader><controlfield tag="001">BV010117553</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950328 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950328s1994 xx ad|| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0126659702</subfield><subfield code="9">0-12-665970-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29954489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010117553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP363.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">599/.0188</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 6600</subfield><subfield code="0">(DE-625)152214:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enabling technologies for cultured neural networks</subfield><subfield code="c">ed. by Daniel A. Stenger ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego u.a.</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 355 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiology. Topics addressed include the isolation and controlled survival, growth, and physiology of cultured mammalian neurons, including geometric growth of neurons; improved, noninvasive neuronal stimulation and recording methods, including advanced microelectrode and optical techniques; and theoretical and experimental frameworks for modeling and analyzing data. This text will prove important to neuron culture students and researchers; to neuroscientists seeking new information on techniques applicable to preparations other than cultured neurons; to chemists interested in biological interfaces; and to biomedical engineers interested in the interdisciplinary nature of the field.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurones</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Culture Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell culture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nerve Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Pathways</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Neurobiology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stenger, David A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006718064&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006718064</subfield></datafield></record></collection>
id DE-604.BV010117553
illustrated Illustrated
indexdate 2024-12-23T13:51:45Z
institution BVB
isbn 0126659702
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006718064
oclc_num 29954489
open_access_boolean
owner DE-355
DE-BY-UBR
owner_facet DE-355
DE-BY-UBR
physical XX, 355 S. Ill., graph. Darst.
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Acad. Press
record_format marc
spellingShingle Enabling technologies for cultured neural networks
Neurones ram
Cell Culture Techniques
Cell culture
Nerve Net
Neural Pathways
Neural circuitry
Neural networks (Neurobiology)
Neurons
Nervenzelle (DE-588)4041649-5 gnd
Zellkultur (DE-588)4067547-6 gnd
Nervennetz (DE-588)4041638-0 gnd
subject_GND (DE-588)4041649-5
(DE-588)4067547-6
(DE-588)4041638-0
title Enabling technologies for cultured neural networks
title_auth Enabling technologies for cultured neural networks
title_exact_search Enabling technologies for cultured neural networks
title_full Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ...
title_fullStr Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ...
title_full_unstemmed Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ...
title_short Enabling technologies for cultured neural networks
title_sort enabling technologies for cultured neural networks
topic Neurones ram
Cell Culture Techniques
Cell culture
Nerve Net
Neural Pathways
Neural circuitry
Neural networks (Neurobiology)
Neurons
Nervenzelle (DE-588)4041649-5 gnd
Zellkultur (DE-588)4067547-6 gnd
Nervennetz (DE-588)4041638-0 gnd
topic_facet Neurones
Cell Culture Techniques
Cell culture
Nerve Net
Neural Pathways
Neural circuitry
Neural networks (Neurobiology)
Neurons
Nervenzelle
Zellkultur
Nervennetz
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006718064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT stengerdavida enablingtechnologiesforculturedneuralnetworks