Enabling technologies for cultured neural networks
Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiol...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
San Diego u.a.
Acad. Press
1994
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010117553 | ||
003 | DE-604 | ||
005 | 19950328 | ||
007 | t| | ||
008 | 950328s1994 xx ad|| |||| 00||| engod | ||
020 | |a 0126659702 |9 0-12-665970-2 | ||
035 | |a (OCoLC)29954489 | ||
035 | |a (DE-599)BVBBV010117553 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
050 | 0 | |a QP363.3 | |
082 | 0 | |a 599/.0188 |2 20 | |
084 | |a WX 6600 |0 (DE-625)152214:13423 |2 rvk | ||
245 | 1 | 0 | |a Enabling technologies for cultured neural networks |c ed. by Daniel A. Stenger ... |
264 | 1 | |a San Diego u.a. |b Acad. Press |c 1994 | |
300 | |a XX, 355 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiology. Topics addressed include the isolation and controlled survival, growth, and physiology of cultured mammalian neurons, including geometric growth of neurons; improved, noninvasive neuronal stimulation and recording methods, including advanced microelectrode and optical techniques; and theoretical and experimental frameworks for modeling and analyzing data. This text will prove important to neuron culture students and researchers; to neuroscientists seeking new information on techniques applicable to preparations other than cultured neurons; to chemists interested in biological interfaces; and to biomedical engineers interested in the interdisciplinary nature of the field. | |
650 | 7 | |a Neurones |2 ram | |
650 | 4 | |a Cell Culture Techniques | |
650 | 4 | |a Cell culture | |
650 | 4 | |a Nerve Net | |
650 | 4 | |a Neural Pathways | |
650 | 4 | |a Neural circuitry | |
650 | 4 | |a Neural networks (Neurobiology) | |
650 | 4 | |a Neurons | |
650 | 0 | 7 | |a Nervenzelle |0 (DE-588)4041649-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zellkultur |0 (DE-588)4067547-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nervennetz |0 (DE-588)4041638-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nervenzelle |0 (DE-588)4041649-5 |D s |
689 | 0 | 1 | |a Zellkultur |0 (DE-588)4067547-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nervennetz |0 (DE-588)4041638-0 |D s |
689 | 1 | 1 | |a Zellkultur |0 (DE-588)4067547-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Stenger, David A. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006718064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006718064 |
Datensatz im Suchindex
_version_ | 1819691716874076160 |
---|---|
adam_text | Enabling
Technologies
for
Cultured
Neural
Networks
Edited by
David A Stenger
Center for Bio/molecular Engineering
Naval Research Laboratory
Washington, D C
Thomas M McKenna
Division of Cognitive and Neural Sciences
Office of Naval Research
Arlington, Virginia
ACADEMIC PRESS
San Diego New York Boston London Sydney Tokyo Toronto
Contents
Contributors xv
Preface xix
ONE Controlled Growth of Neurons
1 Toward Establishing Neural Networks in Culture
Carl W Cotman, David H Cribbs, and Jennifer Kahle
I Introduction 3
II Basic Requirements Necessary for Developing an in
Vitro Neural Network 4
Contents
III Defined Media Exist to Support Primary Neurons
and Astrocytes in Neural Networks 6
A Neurons 6
B Astrocytes 7
IV Homogeneous Neuronal Culture Systems Exist
for Reconstructing Specific Neuronal Circuitry
in Vitro 7
V Two Major Requirements for Neuronal Survival
and Growth Are Neurotrophic Factors and
Substrates 8
A Neurotrophic Factors 9
B Substrates 10
VI Techniques Exist to Activate Neural Networks
Selectively 11
VII Techniques Exist to Monitor Electrical, Structural,
and Metabolic Changes with a High Level of
Resolution 12
VIII Cultured Neurons Replicate in Vivo Synaptic
Events 14
IX Cultured Neurons Exhibit Synaptic Analogies of
Learning 16
X Neurons Can Be Directed to Establish Patterns in
Culture 17
XI Conclusion 19
References 20
2 Isolating Embryonic Cerebral Cortical Neuron Subpopu-
lations on a Multistep Buoyant-Density Gradient
Irina Marie, Dragan Marie, and Jeffery L Barker
I Introduction 23
II Rapid Fractionation of Embryonic Rat Cerebral
Cortical Cells Using Percoll Density Gradient 24
A Preparation of Percoll Gradient 24
B Cell Preparation 25
III Characterization of Fractionated Subpopulations of
Cells 25
A Distribution 25
B Morphology 26
C 5-Bromo-2 -deoxyuridine Incorporation 28
D Immunocytochemistry 29
Contents Wi
IV Conclusion 31
References 32
3 Culturing Neural Networks
Philip E Hockberger, Darlene K Racker, and James C Houk
I Introduction 35
II Rationale for Culturing Neural Networks 36
III New Techniques for Culturing Neural
Networks 37
A Brain Slice Cultures 37
B Cocultures 38
C Constructing Dissociated Cell Networks 39
D Multisite Recording in Cultures 40
IV Culturing the Limb Premotor Network 41
A Premotor Network Involves Feedback
Loops 41
B Cerebello—Rubro-Reticular Loop 43
C Constructing the CRR Circuit in Culture 44
V Conclusions 45
References 45
4 Interactions of Cultured Neurons with Defined Surfaces
James J Hickman and David A Stenger
I Introduction 51
II Methods 56
A Chemicals and Film Formation 56
B Surface Analysis 57
C Cell Culture 57
HI Results 58
A Compositional Control of Surface
Properties 58
B Characterization of Aminosilane Surfaces by
Surface Spectroscopy and Neuronal
Culture 62
C Hippocampal Neuron Adhesion and
Outgrowth 65
D Model Studies on Macromolecular Adsorption
to Substrates 69
IV Discussion 69
References 74
Contents
5 Lithographic Definition of Neuronal Microcircuits
David A Stenger and James J Hickman
I Introduction 77
A Background 77
B Objectives 79
C Future Opportunities 80
II Deep UV Lithographic Patterning of Hippocampal
Neurons 80
A Initial Attempts 80
B Second-Generation Masks and Patterning
Strategies 84
C Present Limitations 87
III Future Directions 87
A Definition of Axonal/Dendritic Polarity and
Physiological Relevancy 87
B Selective Placement of Neuronal
Phenotypes 88
C Advanced Lithographic Methods 89
IV Summary 92
References 92
TWO Neuronal Stimulation/
Recording Technology
6 Living Nerve Nets
Adam Curtis, Chris Wilkinson, and Lorna Breckenridge
I Introduction 99
II Recording Systems 100
III Stimulation Systems 101
IV Control of Connection Pattern 102
V The Use of Microfabrication 106
A General Remarks 106
B Microfabrication Techniques 106
C Control of Cell Shape and Neurite
Extension 108
D Control of Dendritization 110
E Control of Synapse Formation 110
F Circuit Building to Plan 110
G Electrodes 110
Contents IX
VI Results 111
A Signal Detection 111
B Stimulation 114
C Multisite Recording from One Cell 114
D Reconstructing Circuits 115
VII Conclusions and Prospects 117
References 118
7 Introduction to the Theory, Design, and Modeling of Thin-
Film Microelectrodes for Neural Interfaces
Gregory T A Kovacs
I Introduction 121
II The Electrode as a Transducer 122
III Trie Electrode/Electrolyte Interface 124
A The Space Charge Layer near an Electrode
in Solution 124
IV The Interfacial Capacitance 125
V Charge Transfer: Resistive Mechanisms 131
A Charge Transfer Resistance 132
B Electrode Polarization 135
VI Impedance Effects Due to Diffusion 137
A Steady-State Diffusion Resistance 137
B Impedance Due to Diffusion under
AC Conditions 138
VII Chemistry at the Interface: Reversible and
Irreversible 140
VIII Spreading Resistance 142
IX Summary of Theoretical Model 143
X Thin-Film Microelectrode Structures 144
A Planar Thin-Film Microelectrodes 145
B Basic Thin-Film Microelectrode
Designs 147
C Nonplanar Microelectrode Structures 147
XI Nanostructured Surfaces 151
A Metal Powder Deposition 151
B Surface Etching 152
C Circuit Model Extension for Porous
Surfaces 153
D Chemical Modification of Microelectrode
Surfaces 155
XII Parasitic Circuit Elements of Thin-Film
Microelectrodes 156
A Resistance of Interconnects 157
Contents
B Capacitance to Electrolyte through Passiva-
tion Layer 158
C Substrate Capacitance 159
D Coupling Capacitance 159
XIII Extended Microelectrode Circuit Model 160
XIV Conclusions 161
References 162
8 Multineuron Patterning and Recording
Bruce C Wheeler and Gregory J Brewer
1 Introduction 167
II Technologies for Controlled Growth of Neural
Cultures 169
A Laser Ablation of Polylysine 169
B Covalently Bound Aminosilane Patterns on
Silicon Nitride 172
III Cell Culture 175
IV Planar Electrode Arrays for Neural Recording
V Signal Processing 181
VI Scientific Applications and Questions 183
References 184
9 Optical Recording from Neural Populations in Vitro:
Application of Laser Scanning Microscopy
Peter Saggau
I Introduction 187
II Fundamentals of Optical Recording of Neural
Activity 188
A Principles of Light Microscopy Relevant for
Optical Recording Techniques 190
B Principles of Scanning Microscopy for Opti-
cal Recording Techniques 191
C Specification of Laser Scanning Microscopy
for Recording Neural Activity 193
III Computer-Controlled Laser Scanning System for
Optical Recording of Neural Activity 195
A System Components 195
B System Performance 198
IV Application of Laser Scanning Microscopy to a
Neural Population in Vitro 199
A Methods 199
B Results 199
V Summary and Conclusions 204
References 205
tO Calcium Imaging of Cortical Circuits in Slices of
Developing Neocortex
Rafael Yuste
I Introduction 207
II Methods: Fura-2 Imaging of Slices of Developing
Neocortex 208
A Optical Recording of Neuronal Populations
with Calcium Indicators 208
B Slices: Advantages and Disadvantages 209
C Loading and Its Limitations 210
D Fura-2: General Properties 212
E Imaging: Video Microscopy 213
F Quantification of Data: Calibrations 215
G Cell Identity 218
III Experimental Design and Analysis: Neuronal
Domains in Developing Neocortex 219
A Development of Cortical Columnar
Microcircuitry 219
B Local Correlations of Spontaneous [Ca2+]i
Changes: Neuronal Domains 220
References 231
THREE Modeling and Data Analysis from Neuronal
Networks in Vitro
11 Role of Electrical Activity in Formation of
Neuronal Networks
R Douglas Fields and Phillip G Nelson
I Introduction 237
A Network Formation and Remodeling 237
B Multicompartmental Cell Culture 238
II Synapse Formation 239
A Action Potentials Inhibit Growth Cone
Motility 241
B Growth Cones Respond to Specific Patterns of
Stimulation 244
C Growth Cones Can Accommodate the Inhibi-
tory Effects of Electrical Stimulation 245
III Synapse Elimination 245
A Synaptic Activity Causes Synapse Elimination
in Culture 246
B Synapse Elimination from the Neuro-
muscular Junction Does Not Follow Hebbian
Rules 247
C Spatial Effect of Activity-Dependent Synapse
Elimination 248
IV Changes in Synaptic Strength 249
A N-Methyl-D-aspartic Acid Channels in
Synaptic Plasticity 251
B Influence of Spontaneous Network Activity in
Synaptic Plasticity 251
V Physiology of Calcium Signaling 252
A Electrical Activity Produces Effects on Growth
Cone Motility through Changes in Intra-
cellular Calcium 252
B Restoration of Free Calcium Levels during
Trains of Action Potentials 254
C Chronic Stimulation Reduces the Rate of
Calcium Influx 254
D Calcium and Synaptic Plasticity 255
VI Conclusions 256
References 257
12 Bioiogical Simulators: Computer Modification of Neuro-
nal Conductances and Formation of Novel Networks
Eve Marder, L F Abbott, Gwendal LeMasson, Michael B O Niel,
Sylvie Renaud-LeMasson, and Andrew A Sharp
I Introduction 261
A Studies in Invertebrate Ganglia 262
B Computational and Neural Network
Analyses 262
C Studies of Networks Formed in Culture 262
II Analog Circuit to Create an Artificial Electrical
Synapse 263
III Artificial Conductances 265
A Simulating a Ligand-Gated Conductance 267
B Simulating a Voltage-Dependent
Conductance 267
C Simulating a Voltage- and Ligand-Dependent
Conductance 269
IV Artificial Synapses 269
V Connecting Model Neurons to Biological
Neurons 272
VI Conclusions 272
References 274
13 Internal Dynamics of Randomized Mammalian Neuronal
Networks in Culture
Guenter W Gross
I Simplified Systems in Cell Culture: Rationale and Sig-
nificance 277
A Complexities of Network Research 277
B Internal Network Dynamics 279
II Summary of Experimental Approaches 280
III Characteristics of Randomized Networks
in Culture 288
A Native Spontaneous Activity 288
B Pharmacologically Induced Activity Changes in
Spinal Cultures 298
C Electrically Induced Activity Changes 303
IV Network States and Activity Modes 304
A Practical Descriptions and Definitions for
Networks in Culture 304
B Determination of Network States and Activity
Modes 306
V Conclusions 310
A Advantages Provided by Isolated, Generalized
Networks 310
B The Ubiquity of Bursting 311
C Emergent Properties 312
References 313
14 Extraction of Dynamical Changes in Neuronal Network
Circuitries Using Multi-Unit Spike Train Analysis
David C Tarn and Guenter W Gross
I Introduction 319
II Methods 322
A Experimental Procedures 322
B Experimental Setup 322
C Statistical Methods 323
W Contents
III Results 323
A Spike Train Analysis 323
B Interspike Interval Analysis 327
C Joint-Interspike Interval Analysis 330
D Conditional Cross-Interspike Interval
Analysis 336
IV Discussion 342
References 344
Index 347
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV010117553 |
callnumber-first | Q - Science |
callnumber-label | QP363 |
callnumber-raw | QP363.3 |
callnumber-search | QP363.3 |
callnumber-sort | QP 3363.3 |
callnumber-subject | QP - Physiology |
classification_rvk | WX 6600 |
ctrlnum | (OCoLC)29954489 (DE-599)BVBBV010117553 |
dewey-full | 599/.0188 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 599 - Mammalia |
dewey-raw | 599/.0188 |
dewey-search | 599/.0188 |
dewey-sort | 3599 3188 |
dewey-tens | 590 - Animals |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02787nam a2200517 c 4500</leader><controlfield tag="001">BV010117553</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950328 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950328s1994 xx ad|| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0126659702</subfield><subfield code="9">0-12-665970-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29954489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010117553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP363.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">599/.0188</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 6600</subfield><subfield code="0">(DE-625)152214:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enabling technologies for cultured neural networks</subfield><subfield code="c">ed. by Daniel A. Stenger ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego u.a.</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 355 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Enabling Technologies for Cultured Neural Networks is the first integrated compilation of recent technological advances relevant to the control and study of mammalian neurons in vitro, providing extensive coverage of the design, fabrication, and use of integrated microelectronic devices in neurobiology. Topics addressed include the isolation and controlled survival, growth, and physiology of cultured mammalian neurons, including geometric growth of neurons; improved, noninvasive neuronal stimulation and recording methods, including advanced microelectrode and optical techniques; and theoretical and experimental frameworks for modeling and analyzing data. This text will prove important to neuron culture students and researchers; to neuroscientists seeking new information on techniques applicable to preparations other than cultured neurons; to chemists interested in biological interfaces; and to biomedical engineers interested in the interdisciplinary nature of the field.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurones</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Culture Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell culture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nerve Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Pathways</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Neurobiology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zellkultur</subfield><subfield code="0">(DE-588)4067547-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stenger, David A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006718064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006718064</subfield></datafield></record></collection> |
id | DE-604.BV010117553 |
illustrated | Illustrated |
indexdate | 2024-12-23T13:51:45Z |
institution | BVB |
isbn | 0126659702 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006718064 |
oclc_num | 29954489 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XX, 355 S. Ill., graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Acad. Press |
record_format | marc |
spellingShingle | Enabling technologies for cultured neural networks Neurones ram Cell Culture Techniques Cell culture Nerve Net Neural Pathways Neural circuitry Neural networks (Neurobiology) Neurons Nervenzelle (DE-588)4041649-5 gnd Zellkultur (DE-588)4067547-6 gnd Nervennetz (DE-588)4041638-0 gnd |
subject_GND | (DE-588)4041649-5 (DE-588)4067547-6 (DE-588)4041638-0 |
title | Enabling technologies for cultured neural networks |
title_auth | Enabling technologies for cultured neural networks |
title_exact_search | Enabling technologies for cultured neural networks |
title_full | Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ... |
title_fullStr | Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ... |
title_full_unstemmed | Enabling technologies for cultured neural networks ed. by Daniel A. Stenger ... |
title_short | Enabling technologies for cultured neural networks |
title_sort | enabling technologies for cultured neural networks |
topic | Neurones ram Cell Culture Techniques Cell culture Nerve Net Neural Pathways Neural circuitry Neural networks (Neurobiology) Neurons Nervenzelle (DE-588)4041649-5 gnd Zellkultur (DE-588)4067547-6 gnd Nervennetz (DE-588)4041638-0 gnd |
topic_facet | Neurones Cell Culture Techniques Cell culture Nerve Net Neural Pathways Neural circuitry Neural networks (Neurobiology) Neurons Nervenzelle Zellkultur Nervennetz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006718064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stengerdavida enablingtechnologiesforculturedneuralnetworks |