Time series analysis forecasting and control

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Box, George E. P. 1919-2013 (VerfasserIn), Jenkins, Gwilym M. (VerfasserIn), Reinsel, Gregory C. 1948-2004 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Englewood Cliffs, NJ Prentice Hall 1994
Ausgabe:3. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV010109489
003 DE-604
005 20131004
007 t
008 950322s1994 d||| |||| 00||| eng d
010 |a 93034620 
020 |a 0130607746  |9 0-13-060774-6 
035 |a (OCoLC)263584962 
035 |a (DE-599)BVBBV010109489 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-384  |a DE-945  |a DE-824  |a DE-739  |a DE-20  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA280 
082 0 |a 003/.83 
084 |a QH 237  |0 (DE-625)141552:  |2 rvk 
084 |a SK 845  |0 (DE-625)143262:  |2 rvk 
084 |a 27  |2 sdnb 
084 |a 19a  |2 sdnb 
084 |a 510  |2 sdnb 
100 1 |a Box, George E. P.  |d 1919-2013  |e Verfasser  |0 (DE-588)108415066  |4 aut 
245 1 0 |a Time series analysis  |b forecasting and control  |c George E. P. Box ; Gwilym M. Jenkins ; Gregory C. Reinsel 
250 |a 3. ed. 
264 1 |a Englewood Cliffs, NJ  |b Prentice Hall  |c 1994 
300 |a XVI, 598 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 7 |a Statistics  |2 cabt 
650 4 |a Mathematisches Modell 
650 4 |a Statistik 
650 4 |a Time-series analysis 
650 4 |a Prediction theory 
650 4 |a Transfer functions 
650 4 |a Feedback control systems  |x Mathematical models 
650 0 7 |a Stochastik  |0 (DE-588)4121729-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastisches Modell  |0 (DE-588)4057633-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |D s 
689 0 1 |a Stochastisches Modell  |0 (DE-588)4057633-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |D s 
689 1 1 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Zeitreihenanalyse  |0 (DE-588)4067486-1  |D s 
689 2 1 |a Stochastik  |0 (DE-588)4121729-9  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Jenkins, Gwilym M.  |e Verfasser  |4 aut 
700 1 |a Reinsel, Gregory C.  |d 1948-2004  |e Verfasser  |0 (DE-588)113599382  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006711994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-006711994 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 925573
_version_ 1816711833828982784
adam_text CONTENTS PREFACE xv 1 INTRODUCTION 1 I. I Four Important Practical Problems 2 /././ Forecasting Time Series, 2 1.1.2 Estimation of Transfer Functions, 3 1.1.3 Analysis of Effects of Unusual Intervention Events To a System, 4 1.1.4 Discrete Control Systems, 5 1.2 Stochastic and Deterministic Dynamic Mathematical Models 7 1.2.1 Stationary and Nonstationarx Stochastic Models for Forecasting and Control, 7 1.2.2 Transfer Function Models, 12 1.2.3 Models for Discrete Control Systems, 14 1.3 Basic Ideas in Model Building 16 1.3.1 Parsimony, 16 1.3.2 Iterative Stages in the Selection of a Model, 16 Parti Stochastic Models and Their Forecasting 19 2 AUTOCORRELATION FUNCTION AND SPECTRUM OF STATIONARY PROCESSES 21 2.1 Autocorrelation Properties of Stationary Models 21 2.1.1 Time Series and Stochastic Processes, 21 2.1.2 Stationary Stochastic Processes, 23 2.1.3 Positive Definiteness and the Autocovariance Matrix. 26 2.1.4 Autocovariance and Autocorrelation Functions. 29 2.1.5 Estimation of Autocovariance and Autocorrelation Functions. 30 2.1.6 Standard Error of Autocorrelation Estimates, 32 2.2 Spectral Properties of Stationary Models 35 2.2.1 Periodogram of a Time Series. 35 2.2.2 Analysis of Variance, 36 iii iv Contents 2.2.3 Spectrum and Spectral Density Function, 37 2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions, 41 2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density Functions, 43 A2.1 Link Between the Sample Spectrum and Autocovariance Function Estimate 44 3 LINEAR STATIONARY MODELS 46 3.1 General Linear Process 46 3.1.1 Two Equivalent Forms for the Linear Process, 46 3.1.2 Autocovariance Generating Function of a Linear Process, 49 3.1.3 Stationarity and Invertibility Conditions for a Linear Process, 50 3.1.4 Autoregressive and Moving Average Processes, 52 3.2 Autoregressive Processes 54 3.2.1 Stationarity Conditions for Autoregressive Processes, 54 3.2.2 Autocorrelation Function and Spectrum of Autoregressive Processes, 55 3.2.3 First Order Autoregressive (Markov) Process, 58 3.2.4 Second Order Autoregressive Process, 60 i 3.2.5 Partial Autocorrelation Function, 64 3.2.6 Estimation of the Partial Autocorrelation Function, 67 3.2.7 Standard Errors of Partial Autocorrelation Estimates, 68 3.3 Moving Average Processes 69 3.3.1 Invertibility Conditions for Moving Average Processes, 69 3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes, 70 3.3.3 First Order Moving Average Process, 72 3.3.4 Second Order Moving Average Process, 73 3.3.5 Duality Between Autoregressive and Moving Average Processes, 75 3.4 Mixed Autoregressive Moving Average Processes 77 3.4.1 Stationarity and Invertibility Properties, 77 3.4.2 Autocorrelation Function and Spectrum of Mixed Processes, 78 3.4.3 First Order Autoregressive First Order Moving Average Process, 80 3.4.4 Summary, 83 Contents v A3.1 Autocovariances, Autocovariance Generating Function, and Stationarity Conditions for a General Linear Process 85 A3.2 Recursive Method for Calculating Estimates of Autoregressive Parameters 87 4 LINEAR NONSTATIONARY MODELS 89 4.1 Autoregressive Integrated Moving Average Processes 89 4.1.1 Nonstationary First Order Autoregressive Process. 89 4.1.2 General Model for a Nonstationary Process Exhibiting Homogeneity, 92 4.1.3 General Form of the Autoregressive Integrated Moving Average Process, 96 4.2 Three Explicit Forms for the Autoregressive Integrated Moving Average Model 99 4.2.1 Difference Equation Form of the Model. 99 4.2.2 Random Shock Form of the Model, 100 4.2.3 Inverted Form of the Model. 106 4.3 Integrated Moving Average Processes 109 4.3.1 Integrated Moving Average Process of Order 10, 1. I). 110 4.3.2 Integrated Moving Average Process of Order (0, 2. 2). 114 4.3.3 General Integrated Moving Average Process of Order 10, d, q), 118 A4.1 Linear Difference Equations 120 A4.2 IMA(0, 1.1) Process With Deterministic Drift 125 A4.3 ARIMA Processes With Added Noise 126 A4.3.1 Sum of Two Independent Moving Average Processes, 126 A4.3.2 Effect of Added Noise on the General Model. 127 A4.3.3 Example for an IMAIO. 1. 1) Process with Added White Noise, 128 A4.3.4 Relation Between the IMAIO. 1.1} Process and a Random Walk. 129 A4.3.5 Autocovariance Function of the General Model with Added Correlated Noise. 129 5 FORECASTING 131 5.1 Minimum Mean Square Error Forecasts and Their Properties 131 vi Contents 5././ Derivation of the Minimum Mean Square Error Forecasts, 133 5.1.2 Three Basic Forms for the Forecast, 135 5.2 Calculating and Updating Forecasts 139 5.2.1 Convenient Format for the Forecasts, 139 5.2.2 Calculation of the ji Weights, 139 5.2.3 Use of the i|* Weights in Updating the Forecasts, 141 5.2.4 Calculation of the Probability Limits of the Forecasts at Any Lead Time, 142 5.3 Forecast Function and Forecast Weights 145 5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator, 146 5.3.2 Role of the Moving Average Operator in Fixing the Initial Values, 147 5.3.3 Lead I Forecast Weights, 148 5.4 Examples of Forecast Functions and Their Updating 151 5.4.1 Forecasting an IMA(0, 1, 1) Process, 151 5.4.2 Forecasting an IMAIO, 2, 2) Process, 154 5.4.3 Forecasting a General IMAiO, d, q) Process, 156 5.4.4 Forecasting Autoregressive Processes, 157 5.4.5 Forecasting a (1, 0, I) Process, 160 5.4.6 Forecasting a II, 1, 1) Process, 162 ; 5.5 Use of State Space Model Formulation for Exact Forecasting 163 5.5.1 State Space Model Representation for the AR1MA Process, 163 5.5.2 Kalman Filtering Relations for Use in Prediction, 164 5.6 Summary 166 A5.1 Correlations Between Forecast Errors 169 A5.1.I Autocorrelation Function of Forecast Errors at Different Origins, 169 A5.1.2 Correlation Between Forecast Errors at the Same Origin with Different Lead Times, 170 A5.2 Forecast Weights for Any Lead Time 172 A5.3 Forecasting in Terms of the General Integrated Form 174 A5.3.I General Method of Obtaining the Integrated Form, 174 A5.3.2 Updating the General Integrated Form, 176 A5.3.3 Comparison with the Discounted Least Squares Method, 176 Contents vii Part II Stochastic Model Building 181 6 MODEL IDENTIFICATION 183 6.1 Objectives of Identification 183 6.1.1 Stages in the Identification Procedure, 184 6.2 Identification Techniques 184 6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 184 6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations. 188 6.2.3 Identification of Some Actual Time Series, 188 6.2.4 Some Additional Model Identification Tools, 197 6.3 Initial Estimates for the Parameters 202 6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function, 202 6.3.2 Initial Estimates for Moving Average Processes, 202 6.3.3 Initial Estimates for Autoregressive Processes, 204 6.3.4 Initial Estimates jor Mixed Autoregressive—Moving Average Processes, 206 6.3.5 Choice Between Stationary and Nonstalionarx Models in Doubtful Cases, 207 6.3.6 More Formal Tests for Unit Roots in ARIMA Models, 208 6.3.7 Initial Estimate of Residual Variance, 211 6.3.8 Approximate Standard Error for v, 212 6.4 Model Multiplicity 214 6.4.1 Multiplicity of Autoregressive Moving Average Models, 214 6.4.2 Multiple Moment Solutions for Moving Average Parameters. 216 6.4.3 Use of the Backward Process to Determine Starting Values, 218 A6.1 Expected Behavior of the Estimated Autocorrelation Function for a Nonstationary Process 218 A6.2 General Method for Obtaining Initial Estimates of the Parameters of a Mixed Autoregressive Moving Average Process 220 7 MODEL ESTIMATION 224 7.1 Study of the Likelihood and Sum of Squares Functions 224 viii Contents 7.1.1 Likelihood Function, 224 7.1.2 Conditional Likelihood for an ARIMA Process, 226 7.1.3 Choice of Starting Values for Conditional Calculation, 227 7.1.4 Unconditional Likelihood; Sum of Squares Function; Least Squares Estimates, 228 7.1.5 General Procedure for Calculating the Unconditional Sum of Squares, 233 7.1.6 Graphical Study of the Sum of Squares Function, 238 7.1.7 Description of Well Behaved Estimation Situations; Confidence Regions, 241 7.2 Nonlinear Estimation 248 7.2.1 General Method of Approach, 248 7.2.2 Numerical Estimates of the Derivatives, 249 7.2.3 Direct Evaluation of the Derivatives, 251 7.2.4 General Least Squares Algorithm for the Conditional Model, 252 7.2.5 Summary of Models Fitted to Series A to F, 255 7.2.6 Large Sample Information Matrices and Covariance Estimates, 256 7.3 Some Estimation Results for Specific Models 259 7.3.1 Autoregressive Processes, 260 7.3.2 Moving Average Processes, 262 7.3.3 Mixed Processes, 262 7.3.4 Separation of Linear and Nonlinear Components in Estimation, 263 7.3.5 Parameter Redundancy, 264 7.4 Estimation Using Bayes Theorem 267 7.4.1 Bayes Theorem, 267 7.4.2 Bayesian Estimation of Parameters, 269 7.4.3 Autoregressive Processes, 270 7.4.4 Moving Average Processes, 272 7.4.5 Mixed processes, 274 7.5 Likelihood Function Based on The State Space Model 275 A7.1 Review of Normal Distribution Theory 279 A7.1.1 Partitioning of a Positive Definite Quadratic Form, 279 A7.1.2 Two Useful Integrals, 280 A7.I.3 Normal Distribution, 281 A7.1.4 Student s t Distribution, 283 A7.2 Review of Linear Least Squares Theory 286 A7.2.I Normal Equations, 286 A7.2.2 Estimation of Residual Variance, 287 A7.2.3 Covariance Matrix of Estimates, 288 Contents ix A7.2.4 Confidence Regions, 288 A7.2.5 Correlated Errors, 288 A7.3 Exact Likelihood Function for Moving Average and Mixed Processes 289 A7.4 Exact Likelihood Function for an Autoregressive Process 296 A7.5 Examples of the Effect of Parameter Estimation Errors on Probability Limits for Forecasts 304 A7.6 Special Note on Estimation of Moving Average Parameters 307 8 MODEL DIAGNOSTIC CHECKING 308 8.1 Checking the Stochastic Model 308 8.1.1 General Philosophy, 308 8.1.2 Overfitting, 309 8.2 Diagnostic Checks Applied to Residuals 312 8.2.1 Autocorrelation Check, 312 8.2.2 Portmanteau Lack of Fit Test, 314 8.2.3 Model Inadequacy Arising from Changes in Parameter Values, 317 8.2.4 Score Tests for Model Checking, 318 8.2.5 Cumulative Periodogram Check, 321 8.3 Use of Residuals to Modify the Model 324 8.3.1 Nature of the Correlations in the Residuals When an Incorrect Model Is Used, 324 8.3.2 Use of Residuals to Modify the Model, 325 9 SEASONAL MODELS 327 9.1 Parsimonious Models for Seasonal Time Series 327 9.1.1 Fitting versus Forecasting, 328 9.1.2 Seasonal Models Involving Adaptive Sines and Cosines, 329 9.1.3 General Multiplicative Seasonal Model, 330 9.2 Representation of the Airline Data by a Multiplicative (0, 1, 1) x (0, 1, 1),2 Seasonal Model 333 9.2.1 Multiplicative (0, 1, 1) x (0, 1, l)n Model, 333 9.2.2 Forecasting, 334 9.2.3 Identification, 341 9.2.4 Estimation, 344 9.2.5 Diagnostic Checking, 349 9.3 Some Aspects of More General Seasonal Models 351 9.3.1 Multiplicative and Nonmultiplicative Models, 351 x Contents 9.3.2 Identification, 353 9.3.3 Estimation, 355 9.3.4 Eventual Forecast Functions for Various Seasonal Models, 355 9.3.5 Choice of Transformation, 358 9.4 Structural Component Models and Deterministic Seasonal Components 359 9.4.1 Deterministic Seasonal and Trend Components and Common Factors, 360 9.4.2 Models with Regression Terms and Time Series Error Terms, 361 A9.1 Autocovariances for Some Seasonal Models 366 Part III Transfer Function Model Building 371 10 TRANSFER FUNCTION MODELS 373 10.1 Linear Transfer Function Models 373 10.1.1 Discrete Transfer Function, 374 10.1.2 Continuous Dynamic Models Represented by Differential Equations, 376 10.2 Discrete Dynamic Models Represented by Difference Equations 381 10.2.1 General Form of the Difference Equation, 381 10.2.2 Nature of the Transfer Function, 383 10.2.3 First and Second Order Discrete Transfer Function Models, 384 10.2.4 Recursive Computation of Output for Any Input, 390 10.2.5 Transfer Function Models with Added Noise, 392 10.3 Relation Between Discrete and Continuous Models 392 10.3.1 Response to a Pulsed Input, 393 10.3.2 Relationships for First and Second Order Coincident Systems, 395 10.3.3 Approximating General Continuous Models by Discrete Models, 398 A10.1 Continuous Models With Pulsed Inputs 399 A10.2 Nonlinear Transfer Functions and Linearization 404 11 IDENTIFICATION, FITTING, AND CHECKING OF TRANSFER FUNCTION MODELS 407 11.1 Cross Correlation Function 408 //././ Properties of the Cross Covariance and Cross Correlation Functions, 408 Contents xi 11.1.2 Estimation of the Cross Covariance and Cross Correlation Functions, 411 11.1.3 Approximate Standard Errors of Cross Correlation Estimates, 413 11.2 Identification of Transfer Function Models 415 11.2.1 Identification of Transfer Function Models by Prewhitening the Input, 417 11.2.2 Example of the Identification of a Transfer Function Model, 419 11.2.3 Identification of the Noise Model, 422 11.2.4 Some General Considerations in Identifying Transfer Function Models, 424 11.3 Fitting and Checking Transfer Function Models 426 11.3.1 Conditional Sum of Squares Function, 426 11.3.2 Nonlinear Estimation, 429 11.3.3 Use of Residuals for Diagnostic Checking, 431 11.3.4 Specific Checks Applied to the Residuals, 432 11.4 Some Examples of Fitting and Checking Transfer Function Models 435 11.4.1 Fitting and Checking of the Gas Furnace Model, 435 11.4.2 Simulated Example with Two Inputs, 441 11.5 Forecasting Using Leading Indicators 444 11.5.1 Minimum Mean Square Error Forecast, 444 11.5.2 Forecast of CO2 Output from Gas Furnace, 448 11.5.3 Forecast of Nonstationary Sales Data Using a Leading Indicator, 451 11.6 Some Aspects of the Design of Experiments to Estimate Transfer Functions 453 A 11.1 Use of Cross Spectral Analysis for Transfer Function Model Identification 455 All.1.1 Identification of Single Input Transfer Function Models, 455 All .1.2 Identification of Multiple Input Transfer Function Models, 456 Al 1.2 Choice of Input to Provide Optimal Parameter Estimates 457 All .2.1 Design of Optimal Inputs for a Simple System, 457 Al 1.2.2 Numerical Example, 460 12 INTERVENTION ANALYSIS MODELS AND OUTLIER DETECTION 462 12.1 Intervention Analysis Methods 462 12.1.1 Models for Intervention Analysis, 462 xii Contents 12.1.2 Example of Intervention Analysis, 465 12.1.3 Nature of the MLEfor a Simple Level Change Parameter Model, 466 12.2 Outlier Analysis for Time Series 469 12.2.1 Models for Additive and Innovational Outliers, 469 12.2.2 Estimation of Outlier Effect for Known Timing of the Outlier, 470 12.2.3 Iterative Procedure for Outlier Detection, 471 12.2.4 Examples of Analysis of Outliers, 473 12.3 Estimation for ARMA Models With Missing Values 474 Part IV Design of Discrete Control Schemes 481 13 ASPECTS OF PROCESS CONTROL 483 13.1 Process Monitoring and Process Adjustment 484 13.1.1 Process Monitoring, 484 13.1.2 Process Adjustment, 487 13.2 Process Adjustment Using Feedback Control 488 13.2.1 Feedback Adjustment Chart, 489 13.2.2 Modeling the Feedback Loop, 492 13.2.3 Simple Models for Disturbances and Dynamics, 493 13.2.4 General Minimum Mean Square Error Feedback Control Schemes, 497 13.2.5 Manual Adjustment for Discrete Proportional Integral Schemes, 499 13.2.6 Complementary Roles of Monitoring and Adjustment, 503 13.3 Excessive Adjustment Sometimes Required by MMSE Control 505 13.3.1 Constrained Control, 506 13.4 Minimum Cost Control With Fixed Costs of Adjustment And Monitoring 508 13.4.1 Bounded Adjustment Scheme for Fixed Adjustment Cost, 508 13.4.2 Indirect Approach for Obtaining a Bounded Adjustment Scheme, 510 13.4.3 Inclusion of the Cost of Monitoring, 511 13.5 Monitoring Values of Parameters of Forecasting and Feedback Adjustment Schemes 514 A 13.1 Feedback Control Schemes Where the Adjustment Variance Is Restricted 516 A13.1.1 Derivation of Optimal Adjustment, 517 Contents xiii A13.2 Choice of the Sampling Interval 526 A13.2.I Illustration of the Effect of Reducing Sampling Frequency, 526 AJ3.2.2 Sampling an IMA{O, I, I) Process, 526 Part V Charts and Tables 531 COLLECTION OF TABLES AND CHARTS 533 COLLECTION OF TIME SERIES USED FOR EXAMPLES IN THE TEXT AND IN EXERCISES 540 REFERENCES 556 Part VI EXERCISES AND PROBLEMS 569 INDEX 589
any_adam_object 1
author Box, George E. P. 1919-2013
Jenkins, Gwilym M.
Reinsel, Gregory C. 1948-2004
author_GND (DE-588)108415066
(DE-588)113599382
author_facet Box, George E. P. 1919-2013
Jenkins, Gwilym M.
Reinsel, Gregory C. 1948-2004
author_role aut
aut
aut
author_sort Box, George E. P. 1919-2013
author_variant g e p b gep gepb
g m j gm gmj
g c r gc gcr
building Verbundindex
bvnumber BV010109489
callnumber-first Q - Science
callnumber-label QA280
callnumber-raw QA280
callnumber-search QA280
callnumber-sort QA 3280
callnumber-subject QA - Mathematics
classification_rvk QH 237
SK 845
ctrlnum (OCoLC)263584962
(DE-599)BVBBV010109489
dewey-full 003/.83
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 003 - Systems
dewey-raw 003/.83
dewey-search 003/.83
dewey-sort 13 283
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Mathematik
Wirtschaftswissenschaften
edition 3. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02715nam a2200673 c 4500</leader><controlfield tag="001">BV010109489</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131004 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950322s1994 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">93034620</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0130607746</subfield><subfield code="9">0-13-060774-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263584962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010109489</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA280</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 845</subfield><subfield code="0">(DE-625)143262:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19a</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Box, George E. P.</subfield><subfield code="d">1919-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108415066</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time series analysis</subfield><subfield code="b">forecasting and control</subfield><subfield code="c">George E. P. Box ; Gwilym M. Jenkins ; Gregory C. Reinsel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Englewood Cliffs, NJ</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 598 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transfer functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback control systems</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jenkins, Gwilym M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reinsel, Gregory C.</subfield><subfield code="d">1948-2004</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113599382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006711994&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006711994</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV010109489
illustrated Illustrated
indexdate 2024-11-25T17:16:24Z
institution BVB
isbn 0130607746
language English
lccn 93034620
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006711994
oclc_num 263584962
open_access_boolean
owner DE-384
DE-945
DE-824
DE-739
DE-20
DE-634
DE-83
DE-11
DE-188
owner_facet DE-384
DE-945
DE-824
DE-739
DE-20
DE-634
DE-83
DE-11
DE-188
physical XVI, 598 S. graph. Darst.
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Prentice Hall
record_format marc
spellingShingle Box, George E. P. 1919-2013
Jenkins, Gwilym M.
Reinsel, Gregory C. 1948-2004
Time series analysis forecasting and control
Statistics cabt
Mathematisches Modell
Statistik
Time-series analysis
Prediction theory
Transfer functions
Feedback control systems Mathematical models
Stochastik (DE-588)4121729-9 gnd
Stochastisches Modell (DE-588)4057633-4 gnd
Zeitreihenanalyse (DE-588)4067486-1 gnd
Dynamisches System (DE-588)4013396-5 gnd
subject_GND (DE-588)4121729-9
(DE-588)4057633-4
(DE-588)4067486-1
(DE-588)4013396-5
title Time series analysis forecasting and control
title_auth Time series analysis forecasting and control
title_exact_search Time series analysis forecasting and control
title_full Time series analysis forecasting and control George E. P. Box ; Gwilym M. Jenkins ; Gregory C. Reinsel
title_fullStr Time series analysis forecasting and control George E. P. Box ; Gwilym M. Jenkins ; Gregory C. Reinsel
title_full_unstemmed Time series analysis forecasting and control George E. P. Box ; Gwilym M. Jenkins ; Gregory C. Reinsel
title_short Time series analysis
title_sort time series analysis forecasting and control
title_sub forecasting and control
topic Statistics cabt
Mathematisches Modell
Statistik
Time-series analysis
Prediction theory
Transfer functions
Feedback control systems Mathematical models
Stochastik (DE-588)4121729-9 gnd
Stochastisches Modell (DE-588)4057633-4 gnd
Zeitreihenanalyse (DE-588)4067486-1 gnd
Dynamisches System (DE-588)4013396-5 gnd
topic_facet Statistics
Mathematisches Modell
Statistik
Time-series analysis
Prediction theory
Transfer functions
Feedback control systems Mathematical models
Stochastik
Stochastisches Modell
Zeitreihenanalyse
Dynamisches System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006711994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT boxgeorgeep timeseriesanalysisforecastingandcontrol
AT jenkinsgwilymm timeseriesanalysisforecastingandcontrol
AT reinselgregoryc timeseriesanalysisforecastingandcontrol