Fundamentals of uncertainty calculi with applications to fuzzy inference

This decade has witnessed increasing interest in fuzzy technology both from academia and industry. It is often said that fuzzy theory is easy and simple so that engineers can progress quickly to real applications. However, the lack of knowledge of design methodologies and the theoretical results of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grabisch, Michel 1956- (VerfasserIn), Nguyen, Hung T. 1944- (VerfasserIn), Walker, Elbert 1930-2018 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht u.a. Kluwer 1995
Schriftenreihe:[Theory and decision library / B] 30
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010106149
003 DE-604
005 00000000000000.0
007 t|
008 950321s1995 ne ad|| |||| 00||| engod
020 |a 0792331753  |9 0-7923-3175-3 
035 |a (OCoLC)31167123 
035 |a (DE-599)BVBBV010106149 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a ne  |c XA-NL 
049 |a DE-12  |a DE-91G  |a DE-521  |a DE-11  |a DE-188 
050 0 |a QA248.G67 1995 
082 0 |a 006.3/3  |2 20 
082 0 |a 006.3/3 20 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
100 1 |a Grabisch, Michel  |d 1956-  |e Verfasser  |0 (DE-588)121507807  |4 aut 
245 1 0 |a Fundamentals of uncertainty calculi with applications to fuzzy inference  |c by Michel Grabisch and Hung T. Nguyen and Elbert A. Walker 
264 1 |a Dordrecht u.a.  |b Kluwer  |c 1995 
300 |a XI, 346 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a [Theory and decision library / B]  |v 30 
520 3 |a This decade has witnessed increasing interest in fuzzy technology both from academia and industry. It is often said that fuzzy theory is easy and simple so that engineers can progress quickly to real applications. However, the lack of knowledge of design methodologies and the theoretical results of fuzzy theory have often caused problems for design engineers. The aim of this book is to provide a rigorous background for uncertainty calculi, with an emphasis on fuzziness. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference is primarily about the type of knowledge expressed in a natural language, that is, in linguistic terms. The approach to modeling such knowledge is based upon the mathematical theory of uncertainty related to fuzzy measures and integrals and their applications 
520 |a The book consists of two parts: Chapters 2 - 6 comprise the theory, and applications are offered in Chapters 7 - 10. In the theory section the exposition is mathematical in nature and gives a complete background on uncertainty measures and integrals, especially in a fuzzy setting. Applications concern recent ones of fuzzy measures and integrals to problems such as pattern recognition, decision making and subjective multicriteria evaluations 
650 7 |a Filosofia e fundamentos da matematica  |2 larpcal 
650 7 |a Fuzzy logic  |2 gtt 
650 7 |a Fuzzy sets  |2 gtt 
650 7 |a Inferencia estatistica  |2 larpcal 
650 4 |a Fuzzy sets 
650 4 |a Fuzzy systems 
650 4 |a Expert systems (Computer science) 
650 0 7 |a Entscheidung bei Unsicherheit  |0 (DE-588)4070864-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Mengenfunktion  |0 (DE-588)4169421-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Fuzzy-Menge  |0 (DE-588)4061868-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Mustererkennung  |0 (DE-588)4040936-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Fuzzy-Logik  |0 (DE-588)4341284-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Expertensystem  |0 (DE-588)4113491-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Unsicherheit  |0 (DE-588)4186957-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Entscheidung bei Unsicherheit  |0 (DE-588)4070864-0  |D s 
689 0 1 |a Fuzzy-Logik  |0 (DE-588)4341284-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Unsicherheit  |0 (DE-588)4186957-6  |D s 
689 1 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 1 |5 DE-188 
689 2 0 |a Fuzzy-Menge  |0 (DE-588)4061868-7  |D s 
689 2 1 |a Mengenfunktion  |0 (DE-588)4169421-1  |D s 
689 2 |5 DE-188 
689 3 0 |a Mustererkennung  |0 (DE-588)4040936-3  |D s 
689 3 |8 1\p  |5 DE-604 
689 4 0 |a Expertensystem  |0 (DE-588)4113491-6  |D s 
689 4 |8 2\p  |5 DE-604 
700 1 |a Nguyen, Hung T.  |d 1944-  |e Verfasser  |0 (DE-588)138402590  |4 aut 
700 1 |a Walker, Elbert  |d 1930-2018  |e Verfasser  |0 (DE-588)130291854  |4 aut 
810 2 |a B]  |t [Theory and decision library  |v 30  |w (DE-604)BV000021513  |9 30 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006709929 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 SOZ 200f 2001 A 888
DE-BY-TUM_katkey 1624638
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010338700
_version_ 1820899918045249536
any_adam_object
author Grabisch, Michel 1956-
Nguyen, Hung T. 1944-
Walker, Elbert 1930-2018
author_GND (DE-588)121507807
(DE-588)138402590
(DE-588)130291854
author_facet Grabisch, Michel 1956-
Nguyen, Hung T. 1944-
Walker, Elbert 1930-2018
author_role aut
aut
aut
author_sort Grabisch, Michel 1956-
author_variant m g mg
h t n ht htn
e w ew
building Verbundindex
bvnumber BV010106149
callnumber-first Q - Science
callnumber-label QA248
callnumber-raw QA248.G67 1995
callnumber-search QA248.G67 1995
callnumber-sort QA 3248 G67 41995
callnumber-subject QA - Mathematics
classification_rvk SK 830
ctrlnum (OCoLC)31167123
(DE-599)BVBBV010106149
dewey-full 006.3/3
006.3/320
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/3
006.3/3 20
dewey-search 006.3/3
006.3/3 20
dewey-sort 16.3 13
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04128nam a2200745 cb4500</leader><controlfield tag="001">BV010106149</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950321s1995 ne ad|| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792331753</subfield><subfield code="9">0-7923-3175-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31167123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010106149</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248.G67 1995</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/3</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/3 20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grabisch, Michel</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121507807</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of uncertainty calculi with applications to fuzzy inference</subfield><subfield code="c">by Michel Grabisch and Hung T. Nguyen and Elbert A. Walker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht u.a.</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 346 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">[Theory and decision library / B]</subfield><subfield code="v">30</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This decade has witnessed increasing interest in fuzzy technology both from academia and industry. It is often said that fuzzy theory is easy and simple so that engineers can progress quickly to real applications. However, the lack of knowledge of design methodologies and the theoretical results of fuzzy theory have often caused problems for design engineers. The aim of this book is to provide a rigorous background for uncertainty calculi, with an emphasis on fuzziness. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference is primarily about the type of knowledge expressed in a natural language, that is, in linguistic terms. The approach to modeling such knowledge is based upon the mathematical theory of uncertainty related to fuzzy measures and integrals and their applications</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book consists of two parts: Chapters 2 - 6 comprise the theory, and applications are offered in Chapters 7 - 10. In the theory section the exposition is mathematical in nature and gives a complete background on uncertainty measures and integrals, especially in a fuzzy setting. Applications concern recent ones of fuzzy measures and integrals to problems such as pattern recognition, decision making and subjective multicriteria evaluations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Filosofia e fundamentos da matematica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy logic</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy sets</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inferencia estatistica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert systems (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenfunktion</subfield><subfield code="0">(DE-588)4169421-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Logik</subfield><subfield code="0">(DE-588)4341284-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Expertensystem</subfield><subfield code="0">(DE-588)4113491-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fuzzy-Logik</subfield><subfield code="0">(DE-588)4341284-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mengenfunktion</subfield><subfield code="0">(DE-588)4169421-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Expertensystem</subfield><subfield code="0">(DE-588)4113491-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Hung T.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138402590</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walker, Elbert</subfield><subfield code="d">1930-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130291854</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">B]</subfield><subfield code="t">[Theory and decision library</subfield><subfield code="v">30</subfield><subfield code="w">(DE-604)BV000021513</subfield><subfield code="9">30</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006709929</subfield></datafield></record></collection>
id DE-604.BV010106149
illustrated Illustrated
indexdate 2024-12-23T13:51:33Z
institution BVB
isbn 0792331753
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006709929
oclc_num 31167123
open_access_boolean
owner DE-12
DE-91G
DE-BY-TUM
DE-521
DE-11
DE-188
owner_facet DE-12
DE-91G
DE-BY-TUM
DE-521
DE-11
DE-188
physical XI, 346 S. Ill., graph. Darst.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Kluwer
record_format marc
series2 [Theory and decision library / B]
spellingShingle Grabisch, Michel 1956-
Nguyen, Hung T. 1944-
Walker, Elbert 1930-2018
Fundamentals of uncertainty calculi with applications to fuzzy inference
Filosofia e fundamentos da matematica larpcal
Fuzzy logic gtt
Fuzzy sets gtt
Inferencia estatistica larpcal
Fuzzy sets
Fuzzy systems
Expert systems (Computer science)
Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Mengenfunktion (DE-588)4169421-1 gnd
Fuzzy-Menge (DE-588)4061868-7 gnd
Mustererkennung (DE-588)4040936-3 gnd
Fuzzy-Logik (DE-588)4341284-1 gnd
Expertensystem (DE-588)4113491-6 gnd
Unsicherheit (DE-588)4186957-6 gnd
subject_GND (DE-588)4070864-0
(DE-588)4114528-8
(DE-588)4169421-1
(DE-588)4061868-7
(DE-588)4040936-3
(DE-588)4341284-1
(DE-588)4113491-6
(DE-588)4186957-6
title Fundamentals of uncertainty calculi with applications to fuzzy inference
title_auth Fundamentals of uncertainty calculi with applications to fuzzy inference
title_exact_search Fundamentals of uncertainty calculi with applications to fuzzy inference
title_full Fundamentals of uncertainty calculi with applications to fuzzy inference by Michel Grabisch and Hung T. Nguyen and Elbert A. Walker
title_fullStr Fundamentals of uncertainty calculi with applications to fuzzy inference by Michel Grabisch and Hung T. Nguyen and Elbert A. Walker
title_full_unstemmed Fundamentals of uncertainty calculi with applications to fuzzy inference by Michel Grabisch and Hung T. Nguyen and Elbert A. Walker
title_short Fundamentals of uncertainty calculi with applications to fuzzy inference
title_sort fundamentals of uncertainty calculi with applications to fuzzy inference
topic Filosofia e fundamentos da matematica larpcal
Fuzzy logic gtt
Fuzzy sets gtt
Inferencia estatistica larpcal
Fuzzy sets
Fuzzy systems
Expert systems (Computer science)
Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Mengenfunktion (DE-588)4169421-1 gnd
Fuzzy-Menge (DE-588)4061868-7 gnd
Mustererkennung (DE-588)4040936-3 gnd
Fuzzy-Logik (DE-588)4341284-1 gnd
Expertensystem (DE-588)4113491-6 gnd
Unsicherheit (DE-588)4186957-6 gnd
topic_facet Filosofia e fundamentos da matematica
Fuzzy logic
Fuzzy sets
Inferencia estatistica
Fuzzy systems
Expert systems (Computer science)
Entscheidung bei Unsicherheit
Mathematisches Modell
Mengenfunktion
Fuzzy-Menge
Mustererkennung
Fuzzy-Logik
Expertensystem
Unsicherheit
volume_link (DE-604)BV000021513
work_keys_str_mv AT grabischmichel fundamentalsofuncertaintycalculiwithapplicationstofuzzyinference
AT nguyenhungt fundamentalsofuncertaintycalculiwithapplicationstofuzzyinference
AT walkerelbert fundamentalsofuncertaintycalculiwithapplicationstofuzzyinference