Approximation procedures in nonlinear oscillation theory

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bobylev, Nikolaj A. (VerfasserIn), Bûrman, Yûrî M. (VerfasserIn), Korovin, Sergej K. 1945- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin u.a. <<de>> Gruyter 1994
Schriftenreihe:De Gruyter series in nonlinear analysis and applications 2
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV009749591
003 DE-604
005 20230814
007 t|
008 940801s1994 gw |||| 00||| eng d
016 7 |a 941743608  |2 DE-101 
020 |a 3110141329  |9 3-11-014132-9 
035 |a (OCoLC)30543682 
035 |a (DE-599)BVBBV009749591 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-703  |a DE-12  |a DE-91G  |a DE-634  |a DE-188 
050 0 |a QA867.5 
082 0 |a 003/.85  |2 20 
084 |a SK 905  |0 (DE-625)143269:  |2 rvk 
084 |a MAT 416f  |2 stub 
084 |a PHY 013f  |2 stub 
084 |a MAT 354f  |2 stub 
100 1 |a Bobylev, Nikolaj A.  |e Verfasser  |0 (DE-588)1157367208  |4 aut 
245 1 0 |a Approximation procedures in nonlinear oscillation theory  |c Nikolai A. Bobylev ; Yuri M. Burman ; Sergey K. Korovin 
264 1 |a Berlin u.a.  |b <<de>> Gruyter  |c 1994 
300 |a XI, 272 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a De Gruyter series in nonlinear analysis and applications  |v 2 
650 7 |a Approximation, théorie de l'  |2 ram 
650 7 |a Oscillations non linéaires  |2 ram 
650 7 |a approximation non linéaire  |2 inriac 
650 7 |a oscillation non linéaire  |2 inriac 
650 7 |a théorie oscillation  |2 inriac 
650 4 |a Approximation theory 
650 4 |a Nonlinear oscillations 
650 0 7 |a Nichtlineare Schwingung  |0 (DE-588)4042100-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Integraloperator  |0 (DE-588)4131247-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Approximation  |0 (DE-588)4002498-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare Schwingung  |0 (DE-588)4042100-4  |D s 
689 0 1 |a Integraloperator  |0 (DE-588)4131247-8  |D s 
689 0 2 |a Approximation  |0 (DE-588)4002498-2  |D s 
689 0 |5 DE-604 
700 1 |a Bûrman, Yûrî M.  |e Verfasser  |0 (DE-588)1066291519  |4 aut 
700 1 |a Korovin, Sergej K.  |d 1945-  |e Verfasser  |0 (DE-588)121849007  |4 aut 
830 0 |a De Gruyter series in nonlinear analysis and applications  |v 2  |w (DE-604)BV005530011  |9 2 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006449127&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |n oe 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006449127 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 416f 2001 A 8005
0202 MAT 416f 2002 A 2057
DE-BY-TUM_katkey 631280
DE-BY-TUM_location 01
02
DE-BY-TUM_media_number 040020499498
040020606137
_version_ 1820857321015738368
adam_text Contents Preface v Chapter I: Basic Concepts 1 § 1 Equations for oscillatory systems 1 1.1 First order systems 1 1.2 Linear periodic systems 2 1.3 Higher order systems 4 § 2 The shift operator and first return function 8 2.1 Shift operator 8 2.2 Periodic solutions of autonomous systems 9 § 3 Integral and integrofunctional operators for periodic problem .... 11 3.1 Completely continuous operators 11 3.2 Spaces of functions 12 3.3 Linear integral operators and their properties 13 3.4 A superposition operator 13 3.5 The Hammerstein operator 14 3.6 Integral and integrofunctional equations 14 3.7 The Frechet derivative 16 3.8 Periodic problem for systems of automatic control 17 § 4 The harmonic balance method 20 4.1 Forced oscillations 20 4.2 Free oscillations 20 4.3 Oscillations in the systems of automatic control 21 4.4 Harmonic balance method and general theory of projection methods 22 § 5 The method of mechanical quadratures 25 5.1 The Galerkin method with perturbations 25 5.2 Quadrature processes 26 5.3 The method of mechanical quadratures in looking for periodic solutions 27 § 6 The collocation method 29 6.1 The operator scheme of the collocation method 29 6.2 The collocation method in approximation of oscillatory regimes . 31 6.3 On choice of interpolation nodes 32 viii Contents § 7 The method of finite differences 33 7.1 Formulae of numeric differentiation 33 7.2 Discretization of the differential equations 33 7.3 Reduction of the method of finite differences to the Galerkin method 34 § 8 Factor methods 37 8.1 Discrete convergence 37 8.2 Discrete compactness 38 8.3 Discrete convergent sequences of operators 38 8.4 The method of mechanical quadratures 39 8.5 The method of finite differences 40 Chapter II: Existence theorems for oscillatory regimes 43 § 1 Smooth manifolds and differential forms 43 1.1 Smooth manifolds 43 1.2 Tangent spaces 44 1.3 Orientation 46 1.4 Manifolds with boundaries 46 1.5 Exterior forms 47 1.6 Outer product 47 1.7 Differential forms 48 1.8 Integration of differential forms 49 1.9 Outer differentiation 51 § 2 Degree of a mapping 51 2.1 The Sard theorem 52 2.2 Lemmas about one dimensional manifolds 52 2.3 The degree of a mapping 53 2.4 The degree of a mapping (the second approach) 57 2.5 Relation between two definitions of the degree of a mapping . . 60 2.6 Properties of the degree of a mapping 61 2.7 The degree of continuous mappings 64 § 3 Rotation of vector fields 65 3.1 Vector fields 65 3.2 Homotope fields. Criteria of homotopy 65 3.3 Rotation of a vector field 66 3.4 Properties of the rotation 66 § 4 Completely continuous vector fields 73 4.1 Finite dimensional approximations 73 4.2 Soundness of the definition of the rotation 75 4.3 Properties of the rotation 77 Contents jx § 5 Fixed point principles and solution of operator equations 80 5.1 The Brouwer theorem 80 5.2 The Browder theorem 81 5.3 The Schauder theorem 86 5.4 The Leray Schauder principle 87 5.5 The contraction mapping principle 88 5.6 Operator equations in products of Banach spaces 90 § 6 Forced oscillations in systems with weak nonlinearities 94 6.1 Systems with bounded nonlinearities 94 6.2 Systems of automatic control 95 § 7 Oscillations in systems with strong nonlinearities. Directing functions method 98 7.1 Points of r irreversibility 98 7.2 Directing functions 100 7.3 The full system of directing functions 103 7.4 Regular directing functions 105 7.5 Construction of directing functions 105 Chapter III: Convergence of numerical procedures 107 §1 Projection methods 107 1.1 The Galerkin method procedure 107 1.2 The nondegenerate case 107 1.3 Topological principle of convergence of the Galerkin method . . Ill 1.4 Convergence of the Galerkin method with perturbations .... 113 1.5 Projection procedures in the Hilbert space 115 1.6 Estimates of the convergence rate 117 §2 Factor methods 119 2.1 Regular and compact convergence 119 2.2 The a posteriori estimate lemma 119 2.3 The convergence of the factor method (the nondegenerate case) . 121 2.4 The topological principle of convergence of the factor method . . 124 2.5 Convergence of the factor method for equations with a linear main part 129 2.6 Additional remarks 130 § 3 Convergence of the harmonic balance method and the collocation method in the problem of periodic oscillations 148 3.1 Local convergence of the harmonic balance method 148 3.2 The topological principle of convergence 153 3.3 Convergence of the harmonic balance method in the case of nondifferentiable nonlinearities 154 x Contents 3.4 Convergence of the harmonic balance method in the problem of forced oscillations of the systems of automatic control 156 3.5 Local convergence of the collocation method 158 3.6 A global convergence of the collocation method 162 3.7 The harmonic balance and the collocation methods for periodic oscillations of multi circuit systems of automatic control .... 164 3.8 The feasibility of the harmonic balance and the collocation methods 167 § 4 Convergence of the method of mechanical quadratures 171 4.1 Convergent quadrature processes 171 4.2 Local convergence of the method of mechanical quadratures . . 174 4.3 The global convergence of the method of mechanical quadratures 179 4.4 Convergence of the method of mechanical quadratures for general nonlinear systems 181 §5 Convergence of the method of finite differences 188 5.1 Convergent formulae of numeric differentiation 188 5.2 Discretization of differential equations 190 5.3 Network spaces and connecting mappings 191 5.4 A convergence theorem for differentiable nonlinearities .... 192 5.5 Auxiliary statements 192 5.6 Proof of Theorem 5.1 194 5.7 The topological principle of convergence 197 5.8 Additional remarks 198 § 6 Numerical procedures of approximate construction of oscillatory regimes in autonomous systems 198 6.1 Specific features of the problem 198 6.2 The method of the functional parameter 199 6.3 The method of additional constraints 201 6.4 The degeneracy dimension 205 6.5 The convergence theorem 205 6.6 The harmonic balance method in search for oscillations of autonomous systems of automatic control 208 6.7 The functional characteristic 213 6.8 The topological principle of convergence 214 6.9 Additional remarks 215 §7 Affinity theory 215 7.1 Formulation of the problem 215 7.2 Domains with the same core 217 7.3 An affinity theorem for nonautonomous systems 217 7.4 The affinity theorem for nonautonomous systems of automatic control 220 7.5 Autonomous systems. The topological index of a cycle 223 Contents xi 7.6 Affinity theorem for autonomous systems of automatic control . . 224 7.7 Additional remarks 232 § 8 Effective convergence criteria for numerical procedures 235 8.1 Use of affinity theory for proving the convergence of numerical procedures 235 8.2 The directing functions method and convergence of numerical procedures 235 8.3 Stability of oscillatory regimes and convergence of numerical procedures 237 § 9 Effective estimates of the convergence rate for the harmonic balance method 240 9.1 A posteriori error estimates 240 9.2 Quasi linear systems 241 9.3 Systems of automatic control 245 9.4 Stability analysis for the periodic solution 248 Notes on the References 251 References 257 Index 271
any_adam_object 1
author Bobylev, Nikolaj A.
Bûrman, Yûrî M.
Korovin, Sergej K. 1945-
author_GND (DE-588)1157367208
(DE-588)1066291519
(DE-588)121849007
author_facet Bobylev, Nikolaj A.
Bûrman, Yûrî M.
Korovin, Sergej K. 1945-
author_role aut
aut
aut
author_sort Bobylev, Nikolaj A.
author_variant n a b na nab
y m b ym ymb
s k k sk skk
building Verbundindex
bvnumber BV009749591
callnumber-first Q - Science
callnumber-label QA867
callnumber-raw QA867.5
callnumber-search QA867.5
callnumber-sort QA 3867.5
callnumber-subject QA - Mathematics
classification_rvk SK 905
classification_tum MAT 416f
PHY 013f
MAT 354f
ctrlnum (OCoLC)30543682
(DE-599)BVBBV009749591
dewey-full 003/.85
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 003 - Systems
dewey-raw 003/.85
dewey-search 003/.85
dewey-sort 13 285
dewey-tens 000 - Computer science, information, general works
discipline Physik
Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02367nam a2200589 cb4500</leader><controlfield tag="001">BV009749591</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230814 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940801s1994 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">941743608</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110141329</subfield><subfield code="9">3-11-014132-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)30543682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009749591</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA867.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.85</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 905</subfield><subfield code="0">(DE-625)143269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 416f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bobylev, Nikolaj A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1157367208</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation procedures in nonlinear oscillation theory</subfield><subfield code="c">Nikolai A. Bobylev ; Yuri M. Burman ; Sergey K. Korovin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">&lt;&lt;de&gt;&gt; Gruyter</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 272 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation, théorie de l'</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oscillations non linéaires</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">approximation non linéaire</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">oscillation non linéaire</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">théorie oscillation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear oscillations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bûrman, Yûrî M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1066291519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korovin, Sergej K.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121849007</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV005530011</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006449127&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006449127</subfield></datafield></record></collection>
id DE-604.BV009749591
illustrated Not Illustrated
indexdate 2024-12-23T13:34:48Z
institution BVB
isbn 3110141329
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006449127
oclc_num 30543682
open_access_boolean
owner DE-703
DE-12
DE-91G
DE-BY-TUM
DE-634
DE-188
owner_facet DE-703
DE-12
DE-91G
DE-BY-TUM
DE-634
DE-188
physical XI, 272 S.
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher <<de>> Gruyter
record_format marc
series De Gruyter series in nonlinear analysis and applications
series2 De Gruyter series in nonlinear analysis and applications
spellingShingle Bobylev, Nikolaj A.
Bûrman, Yûrî M.
Korovin, Sergej K. 1945-
Approximation procedures in nonlinear oscillation theory
De Gruyter series in nonlinear analysis and applications
Approximation, théorie de l' ram
Oscillations non linéaires ram
approximation non linéaire inriac
oscillation non linéaire inriac
théorie oscillation inriac
Approximation theory
Nonlinear oscillations
Nichtlineare Schwingung (DE-588)4042100-4 gnd
Integraloperator (DE-588)4131247-8 gnd
Approximation (DE-588)4002498-2 gnd
subject_GND (DE-588)4042100-4
(DE-588)4131247-8
(DE-588)4002498-2
title Approximation procedures in nonlinear oscillation theory
title_auth Approximation procedures in nonlinear oscillation theory
title_exact_search Approximation procedures in nonlinear oscillation theory
title_full Approximation procedures in nonlinear oscillation theory Nikolai A. Bobylev ; Yuri M. Burman ; Sergey K. Korovin
title_fullStr Approximation procedures in nonlinear oscillation theory Nikolai A. Bobylev ; Yuri M. Burman ; Sergey K. Korovin
title_full_unstemmed Approximation procedures in nonlinear oscillation theory Nikolai A. Bobylev ; Yuri M. Burman ; Sergey K. Korovin
title_short Approximation procedures in nonlinear oscillation theory
title_sort approximation procedures in nonlinear oscillation theory
topic Approximation, théorie de l' ram
Oscillations non linéaires ram
approximation non linéaire inriac
oscillation non linéaire inriac
théorie oscillation inriac
Approximation theory
Nonlinear oscillations
Nichtlineare Schwingung (DE-588)4042100-4 gnd
Integraloperator (DE-588)4131247-8 gnd
Approximation (DE-588)4002498-2 gnd
topic_facet Approximation, théorie de l'
Oscillations non linéaires
approximation non linéaire
oscillation non linéaire
théorie oscillation
Approximation theory
Nonlinear oscillations
Nichtlineare Schwingung
Integraloperator
Approximation
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006449127&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV005530011
work_keys_str_mv AT bobylevnikolaja approximationproceduresinnonlinearoscillationtheory
AT burmanyurim approximationproceduresinnonlinearoscillationtheory
AT korovinsergejk approximationproceduresinnonlinearoscillationtheory