Completeness in real time process algebra
Abstract: "Recently, J.C.M. Baeten and J.A. Bergstra extended ACP with real time, resulting in a Real Time Process Algebra, called ACP[subscript rho] [BB89]. They introduced an equational theory and an operational semantics. Their paper does not contain a completeness result nor does it contain...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1991
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
91,6 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009224821 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 940313s1991 xx |||| 00||| eng d | ||
035 | |a (OCoLC)27318108 | ||
035 | |a (DE-599)BVBBV009224821 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Klusener, A. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Completeness in real time process algebra |c A. S. Klusener |
264 | 1 | |a Amsterdam |c 1991 | |
300 | |a 57 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 91,6 | |
520 | 3 | |a Abstract: "Recently, J.C.M. Baeten and J.A. Bergstra extended ACP with real time, resulting in a Real Time Process Algebra, called ACP[subscript rho] [BB89]. They introduced an equational theory and an operational semantics. Their paper does not contain a completeness result nor does it contain the definitions to give proofs in detail. In this paper we introduce some machinery and a completeness result. The operational semantics of [BB89] contains the notion of an idle step reflecting that a process can do nothing more then [sic] passing the time before performing a concrete action at a certain point in time. This idle step corresponds nicely to our intuition but it results in uncountable branching transition systems | |
520 | 3 | |a In this paper we give a more abstract operational semantics, by abstracting from the idle step. Due to this simplification we can prove soundness and completeness easily. These results hold for the semantics of [BB89] as well, since both operational semantics induce the same equivalence relation between processes. | |
650 | 4 | |a Real-time data processing | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 91,6 |w (DE-604)BV008928356 |9 91,6 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006133976 |
Datensatz im Suchindex
_version_ | 1819236289977778178 |
---|---|
any_adam_object | |
author | Klusener, A. S. |
author_facet | Klusener, A. S. |
author_role | aut |
author_sort | Klusener, A. S. |
author_variant | a s k as ask |
building | Verbundindex |
bvnumber | BV009224821 |
ctrlnum | (OCoLC)27318108 (DE-599)BVBBV009224821 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02009nam a2200301 cb4500</leader><controlfield tag="001">BV009224821</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940313s1991 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27318108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009224821</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klusener, A. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Completeness in real time process algebra</subfield><subfield code="c">A. S. Klusener</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">57 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">91,6</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Recently, J.C.M. Baeten and J.A. Bergstra extended ACP with real time, resulting in a Real Time Process Algebra, called ACP[subscript rho] [BB89]. They introduced an equational theory and an operational semantics. Their paper does not contain a completeness result nor does it contain the definitions to give proofs in detail. In this paper we introduce some machinery and a completeness result. The operational semantics of [BB89] contains the notion of an idle step reflecting that a process can do nothing more then [sic] passing the time before performing a concrete action at a certain point in time. This idle step corresponds nicely to our intuition but it results in uncountable branching transition systems</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In this paper we give a more abstract operational semantics, by abstracting from the idle step. Due to this simplification we can prove soundness and completeness easily. These results hold for the semantics of [BB89] as well, since both operational semantics induce the same equivalence relation between processes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time data processing</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">91,6</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">91,6</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006133976</subfield></datafield></record></collection> |
id | DE-604.BV009224821 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T13:02:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006133976 |
oclc_num | 27318108 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 57 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Klusener, A. S. Verfasser aut Completeness in real time process algebra A. S. Klusener Amsterdam 1991 57 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 91,6 Abstract: "Recently, J.C.M. Baeten and J.A. Bergstra extended ACP with real time, resulting in a Real Time Process Algebra, called ACP[subscript rho] [BB89]. They introduced an equational theory and an operational semantics. Their paper does not contain a completeness result nor does it contain the definitions to give proofs in detail. In this paper we introduce some machinery and a completeness result. The operational semantics of [BB89] contains the notion of an idle step reflecting that a process can do nothing more then [sic] passing the time before performing a concrete action at a certain point in time. This idle step corresponds nicely to our intuition but it results in uncountable branching transition systems In this paper we give a more abstract operational semantics, by abstracting from the idle step. Due to this simplification we can prove soundness and completeness easily. These results hold for the semantics of [BB89] as well, since both operational semantics induce the same equivalence relation between processes. Real-time data processing Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 91,6 (DE-604)BV008928356 91,6 |
spellingShingle | Klusener, A. S. Completeness in real time process algebra Real-time data processing |
title | Completeness in real time process algebra |
title_auth | Completeness in real time process algebra |
title_exact_search | Completeness in real time process algebra |
title_full | Completeness in real time process algebra A. S. Klusener |
title_fullStr | Completeness in real time process algebra A. S. Klusener |
title_full_unstemmed | Completeness in real time process algebra A. S. Klusener |
title_short | Completeness in real time process algebra |
title_sort | completeness in real time process algebra |
topic | Real-time data processing |
topic_facet | Real-time data processing |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT kluseneras completenessinrealtimeprocessalgebra |