Shintani zeta functions

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yukie, Akihiko (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge Cambridge Univ. Press 1993
Ausgabe:1. publ.
Schriftenreihe:London Mathematical Society: London Mathematical Society lecture note series 183
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV009016629
003 DE-604
005 19940428
007 t|
008 940303s1993 xx |||| 00||| eng d
020 |a 0521448042  |9 0-521-44804-2 
035 |a (OCoLC)246643462 
035 |a (DE-599)BVBBV009016629 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-384  |a DE-12  |a DE-355  |a DE-739  |a DE-91G  |a DE-703  |a DE-11 
084 |a SI 320  |0 (DE-625)143123:  |2 rvk 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a MAT 339f  |2 stub 
084 |a MAT 105f  |2 stub 
100 1 |a Yukie, Akihiko  |e Verfasser  |4 aut 
245 1 0 |a Shintani zeta functions  |c Akihiko Yukie 
250 |a 1. publ. 
264 1 |a Cambridge  |b Cambridge Univ. Press  |c 1993 
300 |a XII, 339 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a London Mathematical Society: London Mathematical Society lecture note series  |v 183 
650 0 7 |a Zetafunktion  |0 (DE-588)4190764-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Zetafunktion  |0 (DE-588)4190764-4  |D s 
689 0 |5 DE-604 
830 0 |a London Mathematical Society: London Mathematical Society lecture note series  |v 183  |w (DE-604)BV000000130  |9 183 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-005961979 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 001z 2001 A 985
DE-BY-TUM_katkey 616366
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020546474
DE-BY-UBR_call_number 80/SI 320
DE-BY-UBR_katkey 2050056
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069008494832
_version_ 1822748794888912897
adam_text Table of contents Preface Notation Introduction §0.1 What is a prehomogeneous vector space? §0.2 The classification §0.3 The global zeta function §0.4 The orbit space Gk Vfcss §0.5 The filtering process and the local theory: a note by D. Wright §0.6 The outline of the general procedure Part I The general theory Chapter 1 Preliminaries §1.1 An invariant measure on GL(n) §1.2 Some adelic analysis Chapter 2 Eisenstein series on GL(n) §2.1 The Fourier expansion of automorphic forms on GL(n) §2.2 The constant terms of Eisenstein series on GL(n) §2.3 The Whittaker functions §2.4 The Fourier expansion of Eisenstein series on GL(n) Chapter 3 The general program §3.1 The zeta function §3.2 The Morse stratification §3.3 The paths §3.4 Shintani s lemma for GL(n) §3.5 The general process §3.6 The passing principle §3.7 Wright s principle §3.8 Examples Part II The Siegel Shintani case Chapter 4 The zeta function for the space of quadratic forms §4.1 The space of quadratic forms §4.2 The case n = 2 §4.3 /3 sequences §4.4 An inductive formulation §4.5 Paths in Pi §4.6 Paths in fp3, p4 §4.7 The cancellations §4.8 The work of Siegel and Shintani Part III Preliminaries for the quartic case Chapter 5 The case G = GL(2) x GL(2), V = Sym2*2 ® k2 §5.1 The space Sym2fc2 ® k2 §5.2 The adjusting term §5.3 Contributions from 0i,i 3 §5.4 Contributions from £ 2, 4 §5.5 The contribution from V™k §5.6 The principal part formula viii Table of Contents Chapter 6 The case G = GL(2) x GL(1)2, V = Sym2*:2 © k §6.1 Reducible prehomogeneous vector spaces with two irreducible factors §6.2 The spaces Syrn2*;2 © k, Sym2k2 © k2 §6.3 The principal part formula Chapter 7 The case G = GL(2) x GL(1)2, V = Sym2k2 © k2 §7.1 Unstable distributions §7.2 Contributions from unstable strata §7.3 The principal part formula Part IV The quartic case Chapter 8 Invariant theory of pairs of ternary quadratic forms §8.1 The space of pairs of ternary quadratic forms §8.2 The Morse stratification §8.3 /3 sequences of lengths 2 Chapter 9 Preliminary estimates §9.1 Distributions associated with paths §9.2 The smoothed Eisenstein series Chapter 10 The non constant terms associated with unstable strata §10.1 The case 0 = (ft) §10.2 The cases t) = (ft), (fto, fto.i) §10.3 The cases 0 = (ft), (ft, Am) §10.4 The case 0 = (ft) §10.5 The case 0 = (ft) §10.6 The cases 0 = (ft, ft,2), (ft) Chapter 11 Unstable distributions §11.1 Unstable distributions §11.2 Technical lemmas Chapter 12 Contributions from unstable strata §12.1 The case 0 = (ft) §12.2 The case E = (ft) §12.3 The case 0 = (ft) §12.4 The case 0 = (ft) §12.5 The case 0 = (ft) §12.6 The case 0 = (ft) §12.7 The case 0 = (ft) §12.8 The case 3 = (ft) §12.9 The case 0 = (ft) §12.10 The case 0 = (/3W) Chapter 13 The main theorem §13.1 The cancellations of distributions §13.2 The principal part formula §13.3 Concluding remarks Bibliography List of symbols Index
any_adam_object 1
author Yukie, Akihiko
author_facet Yukie, Akihiko
author_role aut
author_sort Yukie, Akihiko
author_variant a y ay
building Verbundindex
bvnumber BV009016629
classification_rvk SI 320
SK 600
classification_tum MAT 339f
MAT 105f
ctrlnum (OCoLC)246643462
(DE-599)BVBBV009016629
discipline Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01515nam a2200385 cb4500</leader><controlfield tag="001">BV009016629</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19940428 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940303s1993 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521448042</subfield><subfield code="9">0-521-44804-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246643462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009016629</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 339f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yukie, Akihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shintani zeta functions</subfield><subfield code="c">Akihiko Yukie</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 339 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">183</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">183</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=005961979&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005961979</subfield></datafield></record></collection>
id DE-604.BV009016629
illustrated Not Illustrated
indexdate 2024-12-23T12:56:10Z
institution BVB
isbn 0521448042
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-005961979
oclc_num 246643462
open_access_boolean
owner DE-384
DE-12
DE-355
DE-BY-UBR
DE-739
DE-91G
DE-BY-TUM
DE-703
DE-11
owner_facet DE-384
DE-12
DE-355
DE-BY-UBR
DE-739
DE-91G
DE-BY-TUM
DE-703
DE-11
physical XII, 339 S.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Cambridge Univ. Press
record_format marc
series London Mathematical Society: London Mathematical Society lecture note series
series2 London Mathematical Society: London Mathematical Society lecture note series
spellingShingle Yukie, Akihiko
Shintani zeta functions
London Mathematical Society: London Mathematical Society lecture note series
Zetafunktion (DE-588)4190764-4 gnd
subject_GND (DE-588)4190764-4
title Shintani zeta functions
title_auth Shintani zeta functions
title_exact_search Shintani zeta functions
title_full Shintani zeta functions Akihiko Yukie
title_fullStr Shintani zeta functions Akihiko Yukie
title_full_unstemmed Shintani zeta functions Akihiko Yukie
title_short Shintani zeta functions
title_sort shintani zeta functions
topic Zetafunktion (DE-588)4190764-4 gnd
topic_facet Zetafunktion
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005961979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000130
work_keys_str_mv AT yukieakihiko shintanizetafunctions