Modelling and analysis techniques for capacity planning

Abstract: "This study examines techniques and tools of performance modelling and analysis for use in capacity planning. The study is based on three fundamental assumptions. First, the general plans of an organization must dominate the workload forecasting. Therefore hierarchical models should b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Raatikainen, Kimmo E. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: 1989
Schriftenreihe:Helsingin Yliopisto / Department of Computer Science: Series of publications / A 1989,6
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV008974515
003 DE-604
005 00000000000000.0
007 t|
008 940206s1989 xx m||| 00||| eng d
020 |a 9514551753  |9 951-45-5175-3 
035 |a (OCoLC)22708078 
035 |a (DE-599)BVBBV008974515 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-29T 
100 1 |a Raatikainen, Kimmo E.  |e Verfasser  |4 aut 
245 1 0 |a Modelling and analysis techniques for capacity planning  |c Kimmo E. E. Raatikainen 
264 1 |c 1989 
300 |a Getr. Zählung 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Helsingin Yliopisto / Department of Computer Science: Series of publications / A  |v 1989,6 
500 |a Helsinki, Univ., Diss., 1990 
520 3 |a Abstract: "This study examines techniques and tools of performance modelling and analysis for use in capacity planning. The study is based on three fundamental assumptions. First, the general plans of an organization must dominate the workload forecasting. Therefore hierarchical models should be used to obtain a well-structured description of the workload. Secondly, the performance objectives must be stated from the users' point of view. Since users experience individual response times instead of the average system response-time, the performance objectives are assumed to be related to quantiles of the response-time distribution. Thirdly, model specification and workload identification are based on data that can be efficiently collected 
520 3 |a When quantiles of response times are considered as primary performance indices, queueing network modelling and analysis are challenging. In this study, new techniques are developed both to approximate analytically and to simulate quantiles of response times. The accuracy of the approximation method developed is shown to be reasonable in the practical cases examined. The simulation techniques developed are based on sequential estimation. The length of a simulation run is not predefined, but controlled by the developed mechanisms. The decision to terminate the simulation is based on given accuracy requirements 
520 3 |a Response-time distributions are usually sensitive to shapes of service distributions. Traditional parameteric method have a limited ability to capture the desired shape. Instead, the developed distribution models, based on a nonparametric method, are shown to approximate the shape of service distributions quite accurately. The developed tools and techniques are applied in a real environment. Throughout the study a VAXCluster system, used in an academic research environment, is analyzed. The results reported indicate that the proposed methods are good for practical modelling situations. 
650 4 |a Network analysis (Planning) 
650 4 |a Queuing theory 
650 0 7 |a Benchmark  |0 (DE-588)4144457-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Warteschlangentheorie  |0 (DE-588)4255044-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Kapazitätsplanung  |0 (DE-588)4120544-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Modellierung  |0 (DE-588)4170297-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Kapazitätsplanung  |0 (DE-588)4120544-3  |D s 
689 0 1 |a Modellierung  |0 (DE-588)4170297-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Warteschlangentheorie  |0 (DE-588)4255044-0  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Benchmark  |0 (DE-588)4144457-7  |D s 
689 2 |8 2\p  |5 DE-604 
810 2 |a Department of Computer Science: Series of publications / A  |t Helsingin Yliopisto  |v 1989,6  |w (DE-604)BV000904448  |9 1989,6 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-005926082 

Datensatz im Suchindex

_version_ 1819235864286330882
any_adam_object
author Raatikainen, Kimmo E.
author_facet Raatikainen, Kimmo E.
author_role aut
author_sort Raatikainen, Kimmo E.
author_variant k e r ke ker
building Verbundindex
bvnumber BV008974515
ctrlnum (OCoLC)22708078
(DE-599)BVBBV008974515
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03862nam a2200517 cb4500</leader><controlfield tag="001">BV008974515</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940206s1989 xx m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9514551753</subfield><subfield code="9">951-45-5175-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22708078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008974515</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raatikainen, Kimmo E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling and analysis techniques for capacity planning</subfield><subfield code="c">Kimmo E. E. Raatikainen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zählung</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Helsingin Yliopisto / Department of Computer Science: Series of publications / A</subfield><subfield code="v">1989,6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Helsinki, Univ., Diss., 1990</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This study examines techniques and tools of performance modelling and analysis for use in capacity planning. The study is based on three fundamental assumptions. First, the general plans of an organization must dominate the workload forecasting. Therefore hierarchical models should be used to obtain a well-structured description of the workload. Secondly, the performance objectives must be stated from the users' point of view. Since users experience individual response times instead of the average system response-time, the performance objectives are assumed to be related to quantiles of the response-time distribution. Thirdly, model specification and workload identification are based on data that can be efficiently collected</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">When quantiles of response times are considered as primary performance indices, queueing network modelling and analysis are challenging. In this study, new techniques are developed both to approximate analytically and to simulate quantiles of response times. The accuracy of the approximation method developed is shown to be reasonable in the practical cases examined. The simulation techniques developed are based on sequential estimation. The length of a simulation run is not predefined, but controlled by the developed mechanisms. The decision to terminate the simulation is based on given accuracy requirements</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Response-time distributions are usually sensitive to shapes of service distributions. Traditional parameteric method have a limited ability to capture the desired shape. Instead, the developed distribution models, based on a nonparametric method, are shown to approximate the shape of service distributions quite accurately. The developed tools and techniques are applied in a real environment. Throughout the study a VAXCluster system, used in an academic research environment, is analyzed. The results reported indicate that the proposed methods are good for practical modelling situations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network analysis (Planning)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Benchmark</subfield><subfield code="0">(DE-588)4144457-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapazitätsplanung</subfield><subfield code="0">(DE-588)4120544-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kapazitätsplanung</subfield><subfield code="0">(DE-588)4120544-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Benchmark</subfield><subfield code="0">(DE-588)4144457-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Series of publications / A</subfield><subfield code="t">Helsingin Yliopisto</subfield><subfield code="v">1989,6</subfield><subfield code="w">(DE-604)BV000904448</subfield><subfield code="9">1989,6</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005926082</subfield></datafield></record></collection>
genre (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV008974515
illustrated Not Illustrated
indexdate 2024-12-23T12:55:18Z
institution BVB
isbn 9514551753
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-005926082
oclc_num 22708078
open_access_boolean
owner DE-29T
owner_facet DE-29T
physical Getr. Zählung
publishDate 1989
publishDateSearch 1989
publishDateSort 1989
record_format marc
series2 Helsingin Yliopisto / Department of Computer Science: Series of publications / A
spelling Raatikainen, Kimmo E. Verfasser aut
Modelling and analysis techniques for capacity planning Kimmo E. E. Raatikainen
1989
Getr. Zählung
txt rdacontent
n rdamedia
nc rdacarrier
Helsingin Yliopisto / Department of Computer Science: Series of publications / A 1989,6
Helsinki, Univ., Diss., 1990
Abstract: "This study examines techniques and tools of performance modelling and analysis for use in capacity planning. The study is based on three fundamental assumptions. First, the general plans of an organization must dominate the workload forecasting. Therefore hierarchical models should be used to obtain a well-structured description of the workload. Secondly, the performance objectives must be stated from the users' point of view. Since users experience individual response times instead of the average system response-time, the performance objectives are assumed to be related to quantiles of the response-time distribution. Thirdly, model specification and workload identification are based on data that can be efficiently collected
When quantiles of response times are considered as primary performance indices, queueing network modelling and analysis are challenging. In this study, new techniques are developed both to approximate analytically and to simulate quantiles of response times. The accuracy of the approximation method developed is shown to be reasonable in the practical cases examined. The simulation techniques developed are based on sequential estimation. The length of a simulation run is not predefined, but controlled by the developed mechanisms. The decision to terminate the simulation is based on given accuracy requirements
Response-time distributions are usually sensitive to shapes of service distributions. Traditional parameteric method have a limited ability to capture the desired shape. Instead, the developed distribution models, based on a nonparametric method, are shown to approximate the shape of service distributions quite accurately. The developed tools and techniques are applied in a real environment. Throughout the study a VAXCluster system, used in an academic research environment, is analyzed. The results reported indicate that the proposed methods are good for practical modelling situations.
Network analysis (Planning)
Queuing theory
Benchmark (DE-588)4144457-7 gnd rswk-swf
Warteschlangentheorie (DE-588)4255044-0 gnd rswk-swf
Kapazitätsplanung (DE-588)4120544-3 gnd rswk-swf
Modellierung (DE-588)4170297-9 gnd rswk-swf
(DE-588)4113937-9 Hochschulschrift gnd-content
Kapazitätsplanung (DE-588)4120544-3 s
Modellierung (DE-588)4170297-9 s
DE-604
Warteschlangentheorie (DE-588)4255044-0 s
1\p DE-604
Benchmark (DE-588)4144457-7 s
2\p DE-604
Department of Computer Science: Series of publications / A Helsingin Yliopisto 1989,6 (DE-604)BV000904448 1989,6
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Raatikainen, Kimmo E.
Modelling and analysis techniques for capacity planning
Network analysis (Planning)
Queuing theory
Benchmark (DE-588)4144457-7 gnd
Warteschlangentheorie (DE-588)4255044-0 gnd
Kapazitätsplanung (DE-588)4120544-3 gnd
Modellierung (DE-588)4170297-9 gnd
subject_GND (DE-588)4144457-7
(DE-588)4255044-0
(DE-588)4120544-3
(DE-588)4170297-9
(DE-588)4113937-9
title Modelling and analysis techniques for capacity planning
title_auth Modelling and analysis techniques for capacity planning
title_exact_search Modelling and analysis techniques for capacity planning
title_full Modelling and analysis techniques for capacity planning Kimmo E. E. Raatikainen
title_fullStr Modelling and analysis techniques for capacity planning Kimmo E. E. Raatikainen
title_full_unstemmed Modelling and analysis techniques for capacity planning Kimmo E. E. Raatikainen
title_short Modelling and analysis techniques for capacity planning
title_sort modelling and analysis techniques for capacity planning
topic Network analysis (Planning)
Queuing theory
Benchmark (DE-588)4144457-7 gnd
Warteschlangentheorie (DE-588)4255044-0 gnd
Kapazitätsplanung (DE-588)4120544-3 gnd
Modellierung (DE-588)4170297-9 gnd
topic_facet Network analysis (Planning)
Queuing theory
Benchmark
Warteschlangentheorie
Kapazitätsplanung
Modellierung
Hochschulschrift
volume_link (DE-604)BV000904448
work_keys_str_mv AT raatikainenkimmoe modellingandanalysistechniquesforcapacityplanning