The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nazareth, John L. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1994
Schriftenreihe:Lecture notes in computer science 769
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV008428292
003 DE-604
005 19970821
007 t
008 931215s1994 gw |||| 00||| eng d
016 7 |a 940017547  |2 DE-101 
020 |a 3540576711  |9 3-540-57671-1 
020 |a 0387576711  |9 0-387-57671-1 
035 |a (OCoLC)246319863 
035 |a (DE-599)BVBBV008428292 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-91G  |a DE-739  |a DE-384  |a DE-29T  |a DE-703  |a DE-20  |a DE-19  |a DE-634  |a DE-83  |a DE-11  |a DE-188  |a DE-706 
050 0 |a QA75.5 
050 0 |a T57.8 
082 0 |a 004/.01/51976  |2 20 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a SS 4800  |0 (DE-625)143528:  |2 rvk 
084 |a MAT 916f  |2 stub 
100 1 |a Nazareth, John L.  |e Verfasser  |4 aut 
245 1 0 |a The Newton Cauchy framework  |b a unified approach to unconstrained nonlinear minimization  |c J. L. Nazareth 
264 1 |a Berlin [u.a.]  |b Springer  |c 1994 
300 |a XII, 101 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in computer science  |v 769 
650 7 |a Cauchy  |2 inriap 
650 7 |a Niet-lineaire programmering  |2 gtt 
650 7 |a Optimaliseren  |2 gtt 
650 4 |a Optimisation mathématique 
650 7 |a Optimization mathématique  |2 ram 
650 4 |a Programmation non linéaire 
650 7 |a Programmation non linéaire  |2 ram 
650 7 |a minimisation  |2 inriac 
650 7 |a méthode Newton  |2 inriac 
650 7 |a méthode gradient conjugué  |2 inriac 
650 7 |a méthode quasi-Newton  |2 inriac 
650 7 |a optimisation mathématique  |2 inriac 
650 7 |a optimisation sans contrainte  |2 inriac 
650 7 |a programmation mathématique  |2 inriac 
650 7 |a équation non linéaire  |2 inriac 
650 4 |a Mathematical optimization 
650 4 |a Nonlinear programming 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Optimierung  |0 (DE-588)4128192-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare Optimierung  |0 (DE-588)4128192-5  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |5 DE-604 
830 0 |a Lecture notes in computer science  |v 769  |w (DE-604)BV000000607  |9 769 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005552594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-005552594 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/DAT 001z 2001 A 999-769
DE-BY-TUM_katkey 610126
DE-BY-TUM_media_number 040020518265
_version_ 1816711682775318528
adam_text Table of Contents Chapter 1: Motivation 1 1. Introduction 1 2. Preliminaries 1 3. Conjugate Directions 5 4. The Conjugate Gradient Method 7 5. The Quasi Newton Relation 11 6. The Hereditary QN Property 11 7. Low Rank Updates to Satisfy the QN Relation 12 8. The Quasi Newton Method 17 9. Relationship between Procedures CG and QN/B 20 10. Preconditioned CG and QN/B Procedures 22 11. Concluding Remarks 24 Chapter 2: The Metric Based Cauchy Perspective 26 1. Introduction 26 2. Steepest Descent 26 3. The Cauchy Metric 27 4. The Davidon Variable Metric 29 5. The CG Metric 36 6. The Newton Metric 39 7. Notes 40 Chapter 3: The Model Based Newton Perspective 41 1. Introduction 41 2. The Newton Model 41 3. The Quasi Newton Model 49 4. The CG Related Model 51 5. The Cauchy Model 52 6. Notes 53 Chapter 4: The Newton Cauchy Framework 54 1. Newton Methods 55 2. Quasi Newton Methods 59 3. CG Related Methods 69 4. Cauchy Methods 73 xi Chapter 5: Convergent Implementable Algorithms 75 1. Introduction 75 2. Convergence Conditions 75 3. Hierarchical Implementation of Optimization Methods 79 4. Notes 85 Chapter 6: Unconstrained Optimization Technology 86 1. Newton Technology 86 2. QN Technology 87 3. CG Technology 89 4. Cauchy Technology 90 Bibliography 91 xii
any_adam_object 1
author Nazareth, John L.
author_facet Nazareth, John L.
author_role aut
author_sort Nazareth, John L.
author_variant j l n jl jln
building Verbundindex
bvnumber BV008428292
callnumber-first Q - Science
callnumber-label QA75
callnumber-raw QA75.5
T57.8
callnumber-search QA75.5
T57.8
callnumber-sort QA 275.5
callnumber-subject QA - Mathematics
classification_rvk SK 890
SS 4800
classification_tum MAT 916f
ctrlnum (OCoLC)246319863
(DE-599)BVBBV008428292
dewey-full 004/.01/51976
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 004 - Computer science
dewey-raw 004/.01/51976
dewey-search 004/.01/51976
dewey-sort 14 11 551976
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02566nam a2200661 cb4500</leader><controlfield tag="001">BV008428292</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970821 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">931215s1994 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940017547</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540576711</subfield><subfield code="9">3-540-57671-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387576711</subfield><subfield code="9">0-387-57671-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246319863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008428292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004/.01/51976</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4800</subfield><subfield code="0">(DE-625)143528:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 916f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazareth, John L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Newton Cauchy framework</subfield><subfield code="b">a unified approach to unconstrained nonlinear minimization</subfield><subfield code="c">J. L. Nazareth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 101 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">769</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy</subfield><subfield code="2">inriap</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niet-lineaire programmering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmation non linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmation non linéaire</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">minimisation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode Newton</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode gradient conjugué</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode quasi-Newton</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">optimisation mathématique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">optimisation sans contrainte</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">programmation mathématique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">équation non linéaire</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">769</subfield><subfield code="w">(DE-604)BV000000607</subfield><subfield code="9">769</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=005552594&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005552594</subfield></datafield></record></collection>
id DE-604.BV008428292
illustrated Not Illustrated
indexdate 2024-11-25T17:14:19Z
institution BVB
isbn 3540576711
0387576711
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-005552594
oclc_num 246319863
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-739
DE-384
DE-29T
DE-703
DE-20
DE-19
DE-BY-UBM
DE-634
DE-83
DE-11
DE-188
DE-706
owner_facet DE-91G
DE-BY-TUM
DE-739
DE-384
DE-29T
DE-703
DE-20
DE-19
DE-BY-UBM
DE-634
DE-83
DE-11
DE-188
DE-706
physical XII, 101 S.
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Springer
record_format marc
series Lecture notes in computer science
series2 Lecture notes in computer science
spellingShingle Nazareth, John L.
The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization
Lecture notes in computer science
Cauchy inriap
Niet-lineaire programmering gtt
Optimaliseren gtt
Optimisation mathématique
Optimization mathématique ram
Programmation non linéaire
Programmation non linéaire ram
minimisation inriac
méthode Newton inriac
méthode gradient conjugué inriac
méthode quasi-Newton inriac
optimisation mathématique inriac
optimisation sans contrainte inriac
programmation mathématique inriac
équation non linéaire inriac
Mathematical optimization
Nonlinear programming
Numerisches Verfahren (DE-588)4128130-5 gnd
Nichtlineare Optimierung (DE-588)4128192-5 gnd
subject_GND (DE-588)4128130-5
(DE-588)4128192-5
title The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization
title_auth The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization
title_exact_search The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization
title_full The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization J. L. Nazareth
title_fullStr The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization J. L. Nazareth
title_full_unstemmed The Newton Cauchy framework a unified approach to unconstrained nonlinear minimization J. L. Nazareth
title_short The Newton Cauchy framework
title_sort the newton cauchy framework a unified approach to unconstrained nonlinear minimization
title_sub a unified approach to unconstrained nonlinear minimization
topic Cauchy inriap
Niet-lineaire programmering gtt
Optimaliseren gtt
Optimisation mathématique
Optimization mathématique ram
Programmation non linéaire
Programmation non linéaire ram
minimisation inriac
méthode Newton inriac
méthode gradient conjugué inriac
méthode quasi-Newton inriac
optimisation mathématique inriac
optimisation sans contrainte inriac
programmation mathématique inriac
équation non linéaire inriac
Mathematical optimization
Nonlinear programming
Numerisches Verfahren (DE-588)4128130-5 gnd
Nichtlineare Optimierung (DE-588)4128192-5 gnd
topic_facet Cauchy
Niet-lineaire programmering
Optimaliseren
Optimisation mathématique
Optimization mathématique
Programmation non linéaire
minimisation
méthode Newton
méthode gradient conjugué
méthode quasi-Newton
optimisation mathématique
optimisation sans contrainte
programmation mathématique
équation non linéaire
Mathematical optimization
Nonlinear programming
Numerisches Verfahren
Nichtlineare Optimierung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005552594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000607
work_keys_str_mv AT nazarethjohnl thenewtoncauchyframeworkaunifiedapproachtounconstrainednonlinearminimization