Tensor norms and operator ideals

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Defant, Andreas 1953- (VerfasserIn), Floret, Klaus 1941-2002 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] North-Holland 1993
Schriftenreihe:North-Holland mathematics studies 176
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV007464565
003 DE-604
005 20190123
007 t|
008 930519s1993 xx |||| 00||| eng d
020 |a 0444890912  |9 0-444-89091-2 
035 |a (OCoLC)246656956 
035 |a (DE-599)BVBBV007464565 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-12  |a DE-739  |a DE-355  |a DE-19  |a DE-824  |a DE-11  |a DE-188  |a DE-20 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
100 1 |a Defant, Andreas  |d 1953-  |e Verfasser  |0 (DE-588)1018502793  |4 aut 
245 1 0 |a Tensor norms and operator ideals  |c Andreas Defant ; Klaus Floret 
264 1 |a Amsterdam [u.a.]  |b North-Holland  |c 1993 
300 |a XI, 566 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a North-Holland mathematics studies  |v 176 
650 0 7 |a Tensor  |0 (DE-588)4184723-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Norm  |g Mathematik  |0 (DE-588)4172021-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Operatorenideal  |0 (DE-588)4284995-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Tensor  |0 (DE-588)4184723-4  |D s 
689 0 1 |a Norm  |g Mathematik  |0 (DE-588)4172021-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Operatorenideal  |0 (DE-588)4284995-0  |D s 
689 1 |5 DE-604 
689 2 0 |a Operatorenideal  |0 (DE-588)4284995-0  |D s 
689 2 1 |a Tensor  |0 (DE-588)4184723-4  |D s 
689 2 2 |a Norm  |g Mathematik  |0 (DE-588)4172021-0  |D s 
689 2 |5 DE-604 
689 3 0 |a Tensor  |0 (DE-588)4184723-4  |D s 
689 3 1 |a Norm  |g Mathematik  |0 (DE-588)4172021-0  |D s 
689 3 2 |a Operatorenideal  |0 (DE-588)4284995-0  |D s 
689 3 |5 DE-188 
700 1 |a Floret, Klaus  |d 1941-2002  |e Verfasser  |0 (DE-588)172077206  |4 aut 
830 0 |a North-Holland mathematics studies  |v 176  |w (DE-604)BV000003247  |9 176 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004845399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-004845399 

Datensatz im Suchindex

DE-19_call_number 1601/SK 620 D313
DE-19_location 95
DE-BY-UBM_katkey 2226609
DE-BY-UBM_media_number 41602168130016
DE-BY-UBR_call_number 80/SI 867 D313
DE-BY-UBR_katkey 1745130
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069008793970
_version_ 1823051885849870336
adam_text Contents V Contents Introduction 1 Chapter I: Basic Concepts 7 1. Bilinear Mappings 7 1.2. Continuous bilinear mappings, 1.5. non validity of Hahn Banach the¬ orem, 1.7. non validity of open mapping theorem, 1.8. canonical extension to the bidual. 2. The Algebraic Theory of Tensor Products 15 2.2. Universal property and construction of tensor products, 2.4. examples, 2.5. trace, 2.6. trace duality, 2.7. tensor product of operators. 3. The Projective Norm 26 3.1. Minkowski gauge functional, 3.2. basic properties, 3.3. Bochner inte grable functions, theorem of Dunford Pettis, 3.4. compact sets, 3.6. nuclear operators, 3.7. trace, 3.9. it does not respect subspaces, 3.10. extension property, 3.11. Grothendieck s characterization of L , 3.12. lifting prob¬ lems, 3.13. £| spaces, Ex 3.24. Radon Nikodym theorem for operator val¬ ued measures. 4. The Injective Norm 46 4.1. Basic properties, 4.2. examples, 4.3. t does not respect quotients, 4.5. lifting of vector valued continuous functions, compact extension property, 4.6. integral bilinear forms, Ex 4.3. Fourier matrices. 5. The Approximation Property 58 5.2. Survey about counterexamples, 5.3. compact operators, 5.4. character¬ ization with nuclear operators and the trace, 5.5. injectivity of completions of tensor products of operators, 5.6. operators with nuclear dual, Ex 5.17. compactly approximable operators. 6. Duality of the Projective and Injective Norm 70 6.3. Dense sequences of finite dimensional Banach spaces, Johnson spaces Cp, 6.4. embedding theorem, 6.5. weak principle of local reflexivity, 6.6. principle of local reflexivity, 6.7. extension lemma for integral bilinear forms, Ex 6.4. Lindenstrauss compactness argument. vi Contents 7. The Natural Norm on the p Integrable Functions 77 7.1. Bochner p integrable functions, Ap, 7.2. continuous triangle inequality, 7.3. positive operators, density lemma, 7.4. Ap respects subspaces and quotients, quotient lemma, 7.5. Fourier transform, 7.6. Hilbert transform, 7.7. type and cotype, 7.9. a Beckner like result, Ex 7.1. averaging operator in Lp. 8. Absolutely and Weakly p Summable Series and Averaging Tech 90 niques 8.1. Absolutely p summable and weakly p summable sequences, 8.2. rep¬ resentations of operators on or into £p, 8.3. unconditional summability, 8.4. general scheme of averaging, 8.5. Rademacher functions, Khintchine inequal¬ ity, 8.6. type and cotype of Lp, 8.7. Gauss functions, 8.9. Orlicz property, Ex 8.9. Rademacher versus Gauss averaging, Ex 8.12. absolutely (r, s) summing operators. 9. Operator Ideals 108 9.2. Quasinorms, 9.4. criterion, 9.6. examples, 9.7. injective ideals and the injective hull, 9.8. surjective ideals and the surjective hull, 9.9. dual ideals, 9.10. composition ideals, Ex 9.8. space ideals, Ex 9.13. quasinuclear operators, Ex 9.16. .fiT convex operators. 10. Integral Operators 118 10.3. Characterization with the trace, 10.4. examples, 10.5. factorization, 10.7. characterization with T ® idc 10.8. and 10.9. summability of the diagonal of infinite matrices, Ex 10.4. extension and lifting properties of integral operators. 11. Absolutely p—Summing Operators 127 11.1. Basic characterizations, 11.2. positive operators, 11.3. Grothendieck Pietsch domination theorem and factorization, 11.4. Dvoretzky Rogers the¬ orem, 11.5. composition, 11.6. Hilbert Schmidt operators, 11.7. Pietsch lemma, 11.8. Kwapieri s test, 11.9. absolutely 2 summing norm of idg, 11.10. absolutely p summing norm of the identity of finite dimensional Hilbert spaces, 11.11. little Grothendieck theorem, 11.12. operators with absolutely 2 summing duals and a characterization of Hilbert spaces, Ex 11.10. extension property of absolutely 2 summing operators, Ex 11.13. the ideal of Hilbert Schmidt operators, Ex 11.16. Banach Mazur distances be¬ tween finite dimensional Banach spaces and the Kadec Snobar result about projections, Ex 11.18. factorization of Hilbert Schmidt operators. Contents vii Chapter II: Tensor Norms 146 12. Definition and Examples 146 12.1. Reasonable norms and the metric mapping property, 12.2. criterion, 12.4. finite and cofinite hull, 12.5. Lapreste s tensor norms aPi9, 12.6. com¬ pletion with respect to ctp,q, 12.8. the diagram of Lapreste s tensor norms, 12.9. tensor product representation of weakly p summable sequences, Ex 12.7. tensors of finite rank. 13. The Five Basic Lemmas 159 13.1. Approximation lemma, 13.2. extension lemma, 13.3. embedding lemma, 13.4. density lemma, 13.5. £p local technique lemma. 14. Grothendieck s Inequality 166 14.1. Idea of proof, 14.4. proof of Grothendieck s inequality in tensor form, 14.5. matrix form, 14.7. estimates for the Grothendieck constant Kg, Ex 14.1. the original proof more or less. 15. Dual Tensor Norms 177 15.1. Trace duality, 15.2. dual norms, 15.5. duality theorem, 15.6. acces¬ sibility of tensor norms, 15.7. conditions for the good behaviour of duality, 15.9. tensor norms and their duals on symmetric finite dimensional spaces, 15.10. duality of Ap, the Chevet Persson Saphar inequalities, 15.11. tensor norms closest to Ap, 15.12. another proof of the Beckner result, Ex 15.10. weakly conditionally compact subsets of tensor products. 16. The Bounded Approximation Property 190 16.1. Topologies on S,(E, F), 16.2. characterization with the cofinite hull *¥ of the projective norm, 16.4. results involving the Radon Nikodym property, 16.5. and 16.6. duality of e and tt, 16.7. duality of the operator ideals £,91, and £, 16.8. non nuclear operators with nuclear dual, Ex 16.4. Ex 16.8. reflexivity of 2 {E, F) for special spaces. 17. The Representation Theorem for Maximal Operator Ideals . . . 200 17.2. Maximal operator ideals, 17.3. tensor norms and operator ideals which are associated with each other, 17.4. right tensor norms and a general way of constructing maximal operator ideals, 17.5. the representation theorem, 17.6. the embedding theorem, 17.7. the transfer argument, 17.8. the dual ideal, 17.9. the adjoint ideal, 17.10. 17.13. examples, 17.14. Grothen¬ dieck s theorem, 17.15. and 17.16. characterization with tensor product operators T®ida, 17.19. ideal norms of identity operators in symmetric fi¬ nite dimensional spaces, 17.20. injective embedding of E®aF into the space of operators, 17.21. unit ball of 2t(.E, F), Ex 17.16. continuity of S®T , Ex 17.17. density lemma for maximal normed operator ideals. viii Contents 18. (p, g) Factorable Operators 223 18.2. The norm of the integrating functional, 18.4. ultraproducts, 18.5. fac¬ torization through positive functionals, 18.6. p factorable operators, 18.7. p integral operators, 18.9. Maurey s factorization theorem, 18.11. the fac¬ torization theorem, Ex 18.4. Ex 18.11. properties of ultraproducts. 19. (p, q)~Dominated Operators 241 19.2. The basic estimates, 19.3. Kwapien s factorization theorem, 19.4. composition of factorable and dominated operators, 19.6. Grothendieck in¬ equality for C* algebras. 20. Projective and Injective Tensor Norms 250 20.3. Duality relations, 20.4. examples, 20.6. the projective associate, 20.7. the injective associate, 20.9. finite dimensional characterization, 20.10. gen¬ eral rules for associates, 20.11. 20.13. relations with operator ideals, 20.14. results about gp, 20.15. table for wi,dii9i and their adjoints, 20.17. Gro¬ thendieck s inequality in its original formulation (operator version), finite dimensional Grothendieck constants, 20.18. Banach spaces satisfying Gro thendieck s theorem, 20.19. a result of Saphar and the best constants in the little Grothendieck theorem. 21. Accessible Tensor Norms and Operator Ideals 275 21.2. Accessible operator ideals, 21.4. total accessibility of certain com¬ position ideals, 21.5. accessibility of Lapreste s tensor norms, 21.6. a re¬ sult about the bounded approximation property, 21.7. the a approximation properties, Reinov s results in the case a = gp, 21.11. some results of Kisl jakov and Bourgain Reinov, H°°, Ex 21.3. principle of local reflexivity for operator ideals. 22. Minimal Operator Ideals 287 22.1. The minimal kernel of an operator ideal, 22.2. the representation theorem for minimal operator ideals, 22.3. examples, 22.6. the dual of Vimin{E,F), 22.7. weak * continuous operators in Wnin(F ,E), 22.8. the dual ideal of the minimal kernel, 22.9. a counterexample, Ex 22.7. extension and lifting properties of minimal operator ideals. 23. £» Spaces 300 23.1. Local techniques, 23.2. various characterizations, 23.3. relations with the £p spaces of Lindenstrauss Pelczynski, 23.4. dual characterization, 23.5. £ , and £f spaces, 23.6. the projection constant, 23.7. quasinuclear operators, 23.8. characterization of space ideals with integral operators, 23.9. coincidence of absolutely 1 summing and nuclear operators, Hardy spaces, 23.10. Grothendieck s theorem for £jj spaces, a characterization of Hilbert spaces, Ex 23.8. the extension norm of an operator. Contents ix 24. Stable Measures 314 24.1. The linear dimension of £p and Lq, 24.2. positive definite functions and Bochner s theorem, 24.3. moments of stable measures, 24.4. Levy s theorem about the embedding of £p into Lq (Levy embeddings), 24.5. embeddings into Lq, 24.6. 24.7. results due to Saphar, Kwapien and Maurey about absolutely ^ summing operators with values in £p or spaces with cotype, 24.8. stable type and Rademacher type, Ex 24.1. Schur product, Ex 24.5. stable type. 25. Composition of Accessible Operator Ideals 327 25.1. Representation of the minimal kernel of accessible operator ideals, 25.4. cyclic composition theorem, 25.5. Persson Pietsch multiplication table, 25.6. quotient ideals, 25.7. quotient formula, 25.8. the adjoint of composition ideals, 25.9. the regular hull and characterizations of the associates of £,PiJ and S,p, in particular, of the associated space ideals — results of Kwapien, 25.10. isomorphic characterization of subspaces, quotients, etc. of Lp, 25.11. the minimal kernel of the injective resp. surjective hull of an operator ideal. 26. More About Lp and Hilbert Spaces 344 26.1. Inequalities about aPi9 coming from the Khintchine and Grothen dieck inequalities, 26.2. factorization through Hilbert spaces of the identity mapping (% —? £J?, 26.3. continuity of operators between spaces of Bochner p integrable functions, complexification of operators, 26.5. Kwapieri s re¬ sult about the factorization of operators Lr —? L, through Lp, 26.6. tensor norms and ideals on Hilbert spaces, 26.7. the Hilbert Schmidt tensor norm r, 26.8. Schatten s result about self adjoint, symmetric extensions of r to Banach spaces, 26.10. limit orders of tensor norms, Puhl s result, 26.11. un¬ conditional bases in £i®a£i, Ex 26.6. unconditionally summable sequences in Lp(n ® v). 27. Grothendieck s Fourteen Natural Norms 361 27.2. Grothendieck s diagram, 27.3. the original notations. Chapter III: Special Topics 365 28. More Tensor Norms 365 28.1. Three new classes of tensor norms, 28.3. description of the projective associate of a* ?! 28.4. characterization of operators in £J, | *ur, 28.5. a characterization of operators factoring through a Hilbert space, 28.6. 28.8. description of the composition ideals £p o £q and its adjoints, 28.9. table of results, Ex 28.14. complexification of operators. x Contents 29. The Calculus of Traced Tensor Norms 378 29.1. The tensor contraction, 29.4. the associated operator ideal of a traced tensor norm, 29.5. characterization of p dominated operators, 2], spaces, 29.6. the calculus of traced tensor norms, 29.7. the tensor product of two tensor norms and of maximal normed operator ideals, 29.8. properties of 21 S 23, 29.9. — 29.11. tensor products of special tensor norms, Ex 29.8. ultrastable ideals. 30. The Vector Valued Fourier Transform 394 30.1. Fourier operators, 30.3. their characterization, 30.5. Rademacher and Gauss type and cotype, Kwapien s type/cotype theorem, characterization of Hilbert spaces, 30.6. the main theorem, 30.8. type and cotype with respect to orthonormal bases. 31. Pisier s Factorization Theorem 407 31.1. K convex operators, 31.2. duality of type and cotype, 31.4. Pisier s factorization theorem, 31.5. factorization of compactly approximable oper¬ ators through Hilbert spaces, 31.6. non accessible tensor norms/operator ideals, 31.7. abstract proof of Grothendieck s inequality. 32. Mixing Operators 415 32.2. Reformulation of former results, 32.3. tensor product characteri¬ zation, continuity of tensor product operators between spaces of Bochner p integrable functions, 32.4. a domination theorem, 32.5. Maurey Pisier extrapolation theorem, 32.6. a characterization of 99?^, , 32.7. Maurey s splitting theorem, 32.10. and 32.11. relation with absolutely (r, s) summing operators, 32.12. a finite dimensional result. 33. The Radon Nikodym Property for Tensor Norms and Reflexivity 430 33.1. Duality of e and it revisited, 33.3. Lewis theorem, 33.4. permanence properties, 33.5. Lapreste s tensor norms, 33.6. coincidence of p nuclear and p integral operators, 33.7. p ^strong operators, 33.8. 33.11. reflexivity of tensor products and components of operator ideals. 34. Tensorstable Operator Ideals 445 34.1. /? tensorstable and metrically ^ tensorstable operator ideals, 34.2. strongly /? tensorstable operator ideals, 34.3. examples, 34.4. permanence properties, 34.5. factorization arguments, 34.6. projection constant of the injective tensor product, 34.7. stability of space ideals, 34.8. double Khint chine inequality, stability of tensor products of Hilbert spaces, 34.9. e and x stability of (p, g) factorable operators and their relatives, 34.10. distribu¬ tion of eigenvalues, Pietsch s tensor product trick, 34.11. a result of Kwapieri unifying Orlicz s, Littlewood s and Grothendieck s inequalities, 34.12. im¬ proving weak inequalities with tensor products, mixing operators l —? £p. Contents xi 35. Tensor Norm Techniques for Locally Convex Spaces 469 35.2. Tensor norm topologies, 35.3. traced tensor norms, 35.4. locally convex space ideals, 35.6. injective and projective tensor norms on locally convex spaces, 35.7. tensor product of direct sums, 35.8. lifting of bounded sets, property (BB), 35.9. probleme des topologies, Taskinen s counterexample, 35.10. injective tensor product of (£)ir) spaces. Appendices: A. Some Structural Properties of Banach Spaces 489 Al. Subspaces and quotients, A2. dual systems, A3. lemma of Ky Fan, A4. bases, A5. Banach algebras, A6. lattices, A7. abstract Lp spaces and their representation. B. Integration Theory 493 Extension procedure and the basic theorems: Bl. Daniell functionals, B2. the convergence theorems, B3. measurable functions, the fundamental theorem of the Daniell Stone integration theory, B4. product measures; The Lp— spaces: B5. Holder and continuous triangle inequality, B6. du¬ ality, Radon Nikodym theorem, Segal s localization theorem, Lebesgue de¬ composition, B7. strictly localizable measures; Borel—Radon measures and Riesz representation theorem: B8. r continuity and Bourbaki s extension procedure, Kolzow s theorem, B9. representation of Borel Radon measures, BIO. L is complemented in its bidual; Bochner integration: Bll. measurability of Banach space valued functions, B12. p(n,E), B14. Pettis integrability, B15. variation lemma. C. Representable Operators 508 Grothendieck s characterization: Cl. Riesz densities, C3. nuclear op¬ erators, C4. factorization through £%; The Dunford—Pettis theorem: C6. a general result about representability, C7. strong version of the Dunford Pettis theorem. D. The Radon Nikodym Property 517 Basic properties and examples: Dl. reduction to the Lebesgue measure, D3. examples, D4. dualof Lp(n, E); Pietsch integral operators: D5. and D6. relation with other operator ideals; The Radon Nikodym property and operator ideals: D7. and D8. characterizations in terms of (Pietsch) integral=nuclear, D9. integral operators which are not Pietsch integral. Bibliography 527 List of Symbols 545 Index 555
any_adam_object 1
author Defant, Andreas 1953-
Floret, Klaus 1941-2002
author_GND (DE-588)1018502793
(DE-588)172077206
author_facet Defant, Andreas 1953-
Floret, Klaus 1941-2002
author_role aut
aut
author_sort Defant, Andreas 1953-
author_variant a d ad
k f kf
building Verbundindex
bvnumber BV007464565
classification_rvk SK 370
SK 600
SK 620
ctrlnum (OCoLC)246656956
(DE-599)BVBBV007464565
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02126nam a2200529 cb4500</leader><controlfield tag="001">BV007464565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190123 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930519s1993 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444890912</subfield><subfield code="9">0-444-89091-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246656956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007464565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Defant, Andreas</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018502793</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tensor norms and operator ideals</subfield><subfield code="c">Andreas Defant ; Klaus Floret</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 566 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">176</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Norm</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4172021-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Norm</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4172021-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Norm</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4172021-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Norm</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4172021-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Floret, Klaus</subfield><subfield code="d">1941-2002</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172077206</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">176</subfield><subfield code="w">(DE-604)BV000003247</subfield><subfield code="9">176</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=004845399&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004845399</subfield></datafield></record></collection>
id DE-604.BV007464565
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 0444890912
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-004845399
oclc_num 246656956
open_access_boolean
owner DE-12
DE-739
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-824
DE-11
DE-188
DE-20
owner_facet DE-12
DE-739
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-824
DE-11
DE-188
DE-20
physical XI, 566 S.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher North-Holland
record_format marc
series North-Holland mathematics studies
series2 North-Holland mathematics studies
spellingShingle Defant, Andreas 1953-
Floret, Klaus 1941-2002
Tensor norms and operator ideals
North-Holland mathematics studies
Tensor (DE-588)4184723-4 gnd
Norm Mathematik (DE-588)4172021-0 gnd
Operatorenideal (DE-588)4284995-0 gnd
subject_GND (DE-588)4184723-4
(DE-588)4172021-0
(DE-588)4284995-0
title Tensor norms and operator ideals
title_auth Tensor norms and operator ideals
title_exact_search Tensor norms and operator ideals
title_full Tensor norms and operator ideals Andreas Defant ; Klaus Floret
title_fullStr Tensor norms and operator ideals Andreas Defant ; Klaus Floret
title_full_unstemmed Tensor norms and operator ideals Andreas Defant ; Klaus Floret
title_short Tensor norms and operator ideals
title_sort tensor norms and operator ideals
topic Tensor (DE-588)4184723-4 gnd
Norm Mathematik (DE-588)4172021-0 gnd
Operatorenideal (DE-588)4284995-0 gnd
topic_facet Tensor
Norm Mathematik
Operatorenideal
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004845399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000003247
work_keys_str_mv AT defantandreas tensornormsandoperatorideals
AT floretklaus tensornormsandoperatorideals