Convergence of iterations for linear equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nevanlinna, Olavi (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel u.a. Birkhäuser 1993
Schriftenreihe:Lectures in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV007222736
003 DE-604
005 19930705
007 t|
008 930426s1993 xx d||| |||| 00||| eng d
020 |a 3764328657  |9 3-7643-2865-7 
020 |a 0817628657  |9 0-8176-2865-7 
035 |a (OCoLC)27679137 
035 |a (DE-599)BVBBV007222736 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-739  |a DE-19  |a DE-29T  |a DE-91G  |a DE-824  |a DE-20  |a DE-706  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA297.8 
082 0 |a 511/.4  |2 20 
084 |a SK 910  |0 (DE-625)143270:  |2 rvk 
084 |a 65J10  |2 msc 
100 1 |a Nevanlinna, Olavi  |e Verfasser  |4 aut 
245 1 0 |a Convergence of iterations for linear equations  |c Olavi Nevanlinna 
264 1 |a Basel u.a.  |b Birkhäuser  |c 1993 
300 |a VII, 177 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Lectures in mathematics 
650 7 |a Convergence (Mathématiques)  |2 ram 
650 7 |a Convergentie (wiskunde)  |2 gtt 
650 7 |a Equations - Solutions numériques  |2 ram 
650 7 |a Iteratief oplossen  |2 gtt 
650 7 |a Itération (Mathématiques)  |2 ram 
650 7 |a Numerieke methoden  |2 gtt 
650 4 |a Convergence 
650 4 |a Equations  |x Numerical solutions 
650 4 |a Iterative methods (Mathematics) 
650 0 7 |a Lineare Gleichung  |0 (DE-588)4234490-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvergenz  |0 (DE-588)4032326-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Iteration  |0 (DE-588)4123457-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineare Gleichung  |0 (DE-588)4234490-6  |D s 
689 0 1 |a Iteration  |0 (DE-588)4123457-1  |D s 
689 0 2 |a Konvergenz  |0 (DE-588)4032326-2  |D s 
689 0 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004627843&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-004627843 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 650f 2001 A 26253
DE-BY-TUM_katkey 587885
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010505703
_version_ 1820813056819593216
adam_text Contents Preface vii 1. Motivation, problem and notation 1.1 Motivation 1 1.2 Problem formulation 1 1.3 Usual tools 2 1.4 Notation for polynomial acceleration 2 1.5 Minimal error and minimal residual 5 1.6 Approximation of the solution operator 6 1.7 Location of zeros 7 1.8 Heuristics 9 Comments to Chapter 1 11 2. Spectrum, resolvent and power boundedness 2.1 The spectrum 13 2.2 The resolvent 17 2.3 The spectral mapping theorem 22 2.4 Continuity of the spectrum 23 2.5 Equivalent norms 26 2.6 The Yosida approximation 29 2.7 Power bounded operators 30 2.8 Minimal polynomials and algebraic operators 34 2.9 Quasialgebraic operators 41 2.10 Polynomial numerical hull 41 Comments to Chapter 2 44 3. Linear convergence 3.1 Preliminaries 46 3.2 Generating functions and asymptotic convergence factors 47 3.3 Optimal reduction factor 52 3.4 Green s function for Goo 57 3.5 Optimal polynomials for E 63 3.6 Simply connected Goo (i) 72 3.7 Stationary recursions 77 3.8 Simple examples 81 Comments to Chapter 3 85 4. Sublinear convergence 4.1 Introduction 86 4.2 Convergence of Lk{L 1) 88 4.3 Splitting into invariant subspaces 90 4.4 Uniform convergence 95 4.5 Nonisolated singularity and successive approximation 99 4.6 Nonisolated singularity and polynomial acceleration 103 4.7 Fractional powers of operators 111 4.8 Convergence of iterates 113 4.9 Convergence with speed 116 Comments to Chapter 4 123 V vi 5. Superlinear convergence 5.1 What is superlinear 124 5.2 Introductory examples 125 5.3 Order and type 133 5.4 Finite termination 137 5.5 Lower and upper bounds for optimal polynomials 139 5.6 Infinite products 144 5.7 Almost algebraic operators 145 5.8 Estimates using singular values 157 5.9 Multiple clusters 163 5.10 Approximation with algebraic operators 165 5.11 Locally superlinear implies superlinear 177 Comments to Chapter 5 169 References 171 Definitions 175
any_adam_object 1
author Nevanlinna, Olavi
author_facet Nevanlinna, Olavi
author_role aut
author_sort Nevanlinna, Olavi
author_variant o n on
building Verbundindex
bvnumber BV007222736
callnumber-first Q - Science
callnumber-label QA297
callnumber-raw QA297.8
callnumber-search QA297.8
callnumber-sort QA 3297.8
callnumber-subject QA - Mathematics
classification_rvk SK 910
ctrlnum (OCoLC)27679137
(DE-599)BVBBV007222736
dewey-full 511/.4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.4
dewey-search 511/.4
dewey-sort 3511 14
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02015nam a2200529 c 4500</leader><controlfield tag="001">BV007222736</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19930705 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930426s1993 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764328657</subfield><subfield code="9">3-7643-2865-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817628657</subfield><subfield code="9">0-8176-2865-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27679137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007222736</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA297.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.4</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65J10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nevanlinna, Olavi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence of iterations for linear equations</subfield><subfield code="c">Olavi Nevanlinna</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 177 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convergence (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convergentie (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations - Solutions numériques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iteratief oplossen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Itération (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerieke methoden</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gleichung</subfield><subfield code="0">(DE-588)4234490-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gleichung</subfield><subfield code="0">(DE-588)4234490-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=004627843&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004627843</subfield></datafield></record></collection>
id DE-604.BV007222736
illustrated Illustrated
indexdate 2024-12-23T12:23:07Z
institution BVB
isbn 3764328657
0817628657
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-004627843
oclc_num 27679137
open_access_boolean
owner DE-739
DE-19
DE-BY-UBM
DE-29T
DE-91G
DE-BY-TUM
DE-824
DE-20
DE-706
DE-634
DE-83
DE-11
DE-188
owner_facet DE-739
DE-19
DE-BY-UBM
DE-29T
DE-91G
DE-BY-TUM
DE-824
DE-20
DE-706
DE-634
DE-83
DE-11
DE-188
physical VII, 177 S. graph. Darst.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Birkhäuser
record_format marc
series2 Lectures in mathematics
spellingShingle Nevanlinna, Olavi
Convergence of iterations for linear equations
Convergence (Mathématiques) ram
Convergentie (wiskunde) gtt
Equations - Solutions numériques ram
Iteratief oplossen gtt
Itération (Mathématiques) ram
Numerieke methoden gtt
Convergence
Equations Numerical solutions
Iterative methods (Mathematics)
Lineare Gleichung (DE-588)4234490-6 gnd
Konvergenz (DE-588)4032326-2 gnd
Iteration (DE-588)4123457-1 gnd
subject_GND (DE-588)4234490-6
(DE-588)4032326-2
(DE-588)4123457-1
title Convergence of iterations for linear equations
title_auth Convergence of iterations for linear equations
title_exact_search Convergence of iterations for linear equations
title_full Convergence of iterations for linear equations Olavi Nevanlinna
title_fullStr Convergence of iterations for linear equations Olavi Nevanlinna
title_full_unstemmed Convergence of iterations for linear equations Olavi Nevanlinna
title_short Convergence of iterations for linear equations
title_sort convergence of iterations for linear equations
topic Convergence (Mathématiques) ram
Convergentie (wiskunde) gtt
Equations - Solutions numériques ram
Iteratief oplossen gtt
Itération (Mathématiques) ram
Numerieke methoden gtt
Convergence
Equations Numerical solutions
Iterative methods (Mathematics)
Lineare Gleichung (DE-588)4234490-6 gnd
Konvergenz (DE-588)4032326-2 gnd
Iteration (DE-588)4123457-1 gnd
topic_facet Convergence (Mathématiques)
Convergentie (wiskunde)
Equations - Solutions numériques
Iteratief oplossen
Itération (Mathématiques)
Numerieke methoden
Convergence
Equations Numerical solutions
Iterative methods (Mathematics)
Lineare Gleichung
Konvergenz
Iteration
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004627843&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT nevanlinnaolavi convergenceofiterationsforlinearequations