Infinite dimensional Morse theory and multiple solution problems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chang, Kung-ching 1936- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 1993
Schriftenreihe:Progress in nonlinear differential equations and their applications 6
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV007039414
003 DE-604
005 20140328
007 t|
008 930419s1993 gw d||| |||| 00||| eng d
020 |a 0817634517  |9 0-8176-3451-7 
020 |a 3764334517  |9 3-7643-3451-7 
035 |a (OCoLC)23383893 
035 |a (DE-599)BVBBV007039414 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-12  |a DE-739  |a DE-355  |a DE-91G  |a DE-20  |a DE-824  |a DE-703  |a DE-19  |a DE-634  |a DE-11  |a DE-188  |a DE-384 
050 0 |a QA331 
082 0 |a 515  |2 20 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
084 |a SK 660  |0 (DE-625)143251:  |2 rvk 
084 |a MAT 576f  |2 stub 
100 1 |a Chang, Kung-ching  |d 1936-  |e Verfasser  |0 (DE-588)133505863  |4 aut 
245 1 0 |a Infinite dimensional Morse theory and multiple solution problems  |c Kung-ching Chang 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 1993 
300 |a X, 312 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in nonlinear differential equations and their applications  |v 6 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 4 |a EDP non linéaire 
650 7 |a Morse theorie  |2 gtt 
650 7 |a Morse, théorie de  |2 ram 
650 4 |a calcul variation 
650 4 |a théorie Morse 
650 4 |a Morse theory 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kritischer Punkt  |g Mathematik  |0 (DE-588)4207169-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Lösung  |g Mathematik  |0 (DE-588)4120678-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Semilineare elliptische Differentialgleichung  |0 (DE-588)4225683-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Hamiltonsches System  |0 (DE-588)4139943-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Morse-Theorie  |0 (DE-588)4197103-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Kritischer Punkt  |g Mathematik  |0 (DE-588)4207169-0  |D s 
689 0 1 |a Semilineare elliptische Differentialgleichung  |0 (DE-588)4225683-5  |D s 
689 0 2 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 0 3 |a Morse-Theorie  |0 (DE-588)4197103-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Hamiltonsches System  |0 (DE-588)4139943-2  |D s 
689 1 1 |a Lösung  |g Mathematik  |0 (DE-588)4120678-2  |D s 
689 1 2 |a Morse-Theorie  |0 (DE-588)4197103-6  |D s 
689 1 |5 DE-604 
830 0 |a Progress in nonlinear differential equations and their applications  |v 6  |w (DE-604)BV007934389  |9 6 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-004466301 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 576f 2001 A 10350
DE-BY-TUM_katkey 586576
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010683286
_version_ 1820813023072223232
adam_text Table of Contents Preface vii Introduction ix Chapter I: Infinite Dimensional Morse Theory 1. A Review of Algebraic Topology 1 2. A Review of the Banach Finsler Manifold 14 3. Pseudo Gradient Vector Field and the Deformation Theorems . 19 4. Critical Groups and Morse Type Numbers 32 5. Gromoll Meyer Theory 43 6. Extensions of Morse Theory 54 6.1. Morse Theory Under General Boundary Conditions . . 55 6.2. Morse Theory on a Locally Convex Closed Set 60 7. Equivariant Morse Theory 65 7.1. Preliminaries 66 7.2. Equivariant Deformation 67 7.3. The Splitting Theorem and the Handle Body Theorem for Critical Manifolds 69 7.4. G Cohomology and G Critical Groups 74 Chapter II: Critical Point Theory. 1. Topological Link 83 2. Morse Indices of Minimax Critical Points 92 2.1. Link 92 2.2. Genus and Cogenus 96 3. Connections with Other Theories 99 3.1. Degree theory 99 3.2. Ljusternik Schnirelman Theory 105 3.3. Relative Category 109 4. Invariant Functionals Ill 5. Some Abstract Critical Point Theorems 121 6. Perturbation Theory 131 6.1. Perturbation on Critical Manifolds 131 6.2. Uhlenbeck s Perturbation Method 136 Chapter III: Applications to Semilinear Elliptic Boundary Value Problems. 1. Preliminaries 140 2. Superlinear Problems 144 3. Asymptotically Linear Problems 153 vi Infinite Dimensional Morse Theory 3.1. Nonresonance and Resonance with the Landesman Lazer Condition 153 3.2. Strong Resonance 156 3.3. A Bifurcation Problem 161 3.4. Jumping Nonlinearities 164 3.5. Other Examples 169 4. Bounded Nonlinearities 172 4.1. Functionals Bounded From Below 172 4.2. Oscillating Nonlinearity 173 4.3. Even Functionals 176 4.4. Variational Inequalities 177 Chapter IV: Multiple Periodic Solutions of Hamiltonian Systems 1. Asymptotically Linear Systems 182 2. Reductions and Periodic Nonlinearities 188 2.1. Saddle Point Reduction 188 2.2. A Multiple Solution Theorem 195 2.3. Periodic Nonlinearity 198 3. Singular Potentials 203 4. The Multiple Pendulum Equation 209 5. Some Results on Arnold Conjectures 215 5.1. Conjectures 215 5.2. The Fixed Point Conjecture on (T2 , u 0) 218 5.3. Lagrange Intersections for (CP ,RPn) 220 Chapter V: Applications to Harmonic Maps and Minimal Surfaces 1. Harmonic Maps and the Heat Flow 229 2. The Morse Inequalities 246 3. Morse Decomposition 250 4. The Existence and Multiplicity for Harmonic Maps 257 5. The Plateau Problem for Minimal Surfaces 260 Appendix: Witten s Proof of the Morse Inequalities 1. A Review of Hodge Theory 274 2. The Witten Complex 282 3. Weak Morse Inequalities 287 4. Morse Inequalities 295 References 298 Index of Notation 310 Index 311
any_adam_object 1
author Chang, Kung-ching 1936-
author_GND (DE-588)133505863
author_facet Chang, Kung-ching 1936-
author_role aut
author_sort Chang, Kung-ching 1936-
author_variant k c c kcc
building Verbundindex
bvnumber BV007039414
callnumber-first Q - Science
callnumber-label QA331
callnumber-raw QA331
callnumber-search QA331
callnumber-sort QA 3331
callnumber-subject QA - Mathematics
classification_rvk SK 350
SK 620
SK 660
classification_tum MAT 576f
ctrlnum (OCoLC)23383893
(DE-599)BVBBV007039414
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02763nam a2200649 cb4500</leader><controlfield tag="001">BV007039414</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140328 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930419s1993 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817634517</subfield><subfield code="9">0-8176-3451-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764334517</subfield><subfield code="9">3-7643-3451-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23383893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007039414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 576f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Kung-ching</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133505863</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite dimensional Morse theory and multiple solution problems</subfield><subfield code="c">Kung-ching Chang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 312 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EDP non linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse theorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse, théorie de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calcul variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">théorie Morse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kritischer Punkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4207169-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semilineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4225683-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kritischer Punkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4207169-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Semilineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4225683-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV007934389</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=004466301&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004466301</subfield></datafield></record></collection>
id DE-604.BV007039414
illustrated Illustrated
indexdate 2024-12-23T12:18:52Z
institution BVB
isbn 0817634517
3764334517
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-004466301
oclc_num 23383893
open_access_boolean
owner DE-12
DE-739
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-20
DE-824
DE-703
DE-19
DE-BY-UBM
DE-634
DE-11
DE-188
DE-384
owner_facet DE-12
DE-739
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-20
DE-824
DE-703
DE-19
DE-BY-UBM
DE-634
DE-11
DE-188
DE-384
physical X, 312 S. graph. Darst.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Birkhäuser
record_format marc
series Progress in nonlinear differential equations and their applications
series2 Progress in nonlinear differential equations and their applications
spellingShingle Chang, Kung-ching 1936-
Infinite dimensional Morse theory and multiple solution problems
Progress in nonlinear differential equations and their applications
EDP non linéaire
Morse theorie gtt
Morse, théorie de ram
calcul variation
théorie Morse
Morse theory
Randwertproblem (DE-588)4048395-2 gnd
Kritischer Punkt Mathematik (DE-588)4207169-0 gnd
Lösung Mathematik (DE-588)4120678-2 gnd
Semilineare elliptische Differentialgleichung (DE-588)4225683-5 gnd
Hamiltonsches System (DE-588)4139943-2 gnd
Morse-Theorie (DE-588)4197103-6 gnd
subject_GND (DE-588)4048395-2
(DE-588)4207169-0
(DE-588)4120678-2
(DE-588)4225683-5
(DE-588)4139943-2
(DE-588)4197103-6
title Infinite dimensional Morse theory and multiple solution problems
title_auth Infinite dimensional Morse theory and multiple solution problems
title_exact_search Infinite dimensional Morse theory and multiple solution problems
title_full Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang
title_fullStr Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang
title_full_unstemmed Infinite dimensional Morse theory and multiple solution problems Kung-ching Chang
title_short Infinite dimensional Morse theory and multiple solution problems
title_sort infinite dimensional morse theory and multiple solution problems
topic EDP non linéaire
Morse theorie gtt
Morse, théorie de ram
calcul variation
théorie Morse
Morse theory
Randwertproblem (DE-588)4048395-2 gnd
Kritischer Punkt Mathematik (DE-588)4207169-0 gnd
Lösung Mathematik (DE-588)4120678-2 gnd
Semilineare elliptische Differentialgleichung (DE-588)4225683-5 gnd
Hamiltonsches System (DE-588)4139943-2 gnd
Morse-Theorie (DE-588)4197103-6 gnd
topic_facet EDP non linéaire
Morse theorie
Morse, théorie de
calcul variation
théorie Morse
Morse theory
Randwertproblem
Kritischer Punkt Mathematik
Lösung Mathematik
Semilineare elliptische Differentialgleichung
Hamiltonsches System
Morse-Theorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004466301&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV007934389
work_keys_str_mv AT changkungching infinitedimensionalmorsetheoryandmultiplesolutionproblems