Interpolation and approximation by rational functions in the complex domain

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Walsh, Joseph L. 1895-1973 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI American Math. Soc. 1969
Ausgabe:5. ed.
Schriftenreihe:Colloquium publications 20
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV006247661
003 DE-604
005 20110217
007 t|
008 930210s1969 xx |||| 00||| eng d
020 |a 0821810200  |9 0-821-81020-0 
035 |a (OCoLC)950945 
035 |a (DE-599)BVBBV006247661 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-739  |a DE-355  |a DE-824  |a DE-384  |a DE-706 
050 0 |a QA281 
082 0 |a 517.21 
084 |a SK 470  |0 (DE-625)143241:  |2 rvk 
084 |a SK 750  |0 (DE-625)143254:  |2 rvk 
100 1 |a Walsh, Joseph L.  |d 1895-1973  |e Verfasser  |0 (DE-588)121999017  |4 aut 
245 1 0 |a Interpolation and approximation by rational functions in the complex domain  |c by J. L. Walsh 
250 |a 5. ed. 
264 1 |a Providence, RI  |b American Math. Soc.  |c 1969 
300 |a X, 405 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Colloquium publications  |v 20 
650 7 |a Funcoes Algebricas  |2 larpcal 
650 4 |a Functions 
650 4 |a Interpolation 
650 4 |a Series, Infinite 
650 0 7 |a Approximationstheorie  |0 (DE-588)4120913-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexität  |0 (DE-588)4135369-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Rationale Funktion  |0 (DE-588)4225679-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Approximation  |0 (DE-588)4002498-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Interpolation  |0 (DE-588)4162121-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Rationale Funktion  |0 (DE-588)4225679-3  |D s 
689 0 1 |a Komplexität  |0 (DE-588)4135369-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Rationale Funktion  |0 (DE-588)4225679-3  |D s 
689 1 1 |a Approximation  |0 (DE-588)4002498-2  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Rationale Funktion  |0 (DE-588)4225679-3  |D s 
689 2 1 |a Interpolation  |0 (DE-588)4162121-9  |D s 
689 2 |8 2\p  |5 DE-604 
689 3 0 |a Approximationstheorie  |0 (DE-588)4120913-8  |D s 
689 3 |8 3\p  |5 DE-604 
830 0 |a Colloquium publications  |v 20  |w (DE-604)BV035417609  |9 20 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003945148&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003945148 

Datensatz im Suchindex

DE-BY-UBR_call_number 80/SK 750 W225(5)
DE-BY-UBR_katkey 1092635
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069008076870
_version_ 1822693816524603393
adam_text AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME XX INTERPOLATION AND APPROXIMATION BY RATIONAL FUNCTIONS IN THE COMPLEX DOMAIN BY J. L. WALSH PUBLISHED BY THE AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND TABLE OF CONTENTS PAGE PREFACE III CHAPTER I POSSIBILITY OP APPROXIMATION; ANALYTIC FUNCTIONS $1.1. POINT SETS: PRELIMINARY DEFINITIONS 1 §1.2. FUNCTION-THEORETIC CONSIDERATIONS 4 §1.3. AN OPEN SET AS THE SUM OF REGIONS 6 §1.4. EXPANSION OF AN ANALYTIC FUNCTION 10 §1.5. A THEOREM ON ANALYTIC EXTENSION. 12 §1.6. APPROXIMATION; CHOICE OF POLES 14 §1.7. COMPONENTS OF AN ANALYTIC FUNCTION 17 §1.8. METHODS OF APPELL AND OF WOLFF 19 §1.9. ON THE VANISHING OF ANALYTIC FUNCTIONS 22 §1.10. NECESSARY CONDITIONS FOR APPROXIMATION 23 CHAPTER II POSSIBILITY OF APPROXIMATION, CONTINUED §2.1. LINDELOF S FIRST THEOREM 27 §2.2. LINDELOF S SECOND THEOREM 29 §2.3. CONFORMAL MAPPING OF VARIABLE REGIONS 32 §2.4. APPROXIMATION IN A CLOSED JORDAN REGION 36 §2.5. APPLICATIONS, JORDAN CONFIGURATIONS 39 §2.6. GENERAL FORMS OF CAUCHY S INTEGRAL FORMULA 42 §2.7. SURFACE INTEGRALS AS MEASURES OF APPROXIMATION 44 §2.8. UNIFORM APPROXIMATION; FURTHER RESULTS 46 CHAPTER III INTERPOLATION AND LEMNISCATES §3.1. POLYNOMIALS OF INTERPOLATION 49 §3.2. SEQUENCES AND SERIES OF INTERPOLATION 52 §3.3. LEMNISCATES AND THE JACOBI SERIES 54 §3.4. AN ANALOGOUS SERIES OF INTERPOLATION 56 §3.5. A MORE GENERAL SERIES OF INTERPOLATION 60 CHAPTER IV DEGREE OF CONVERGENCE OF POLYNOMIALS. OVERSONVERGENCE §4.1. EQUIPOTENTIAL CURVES IN CONFORMAL MAPS 65 §4.2. APPROXIMATION OF JORDAN CURVES BY A LEMNISCATE 68 §4.3. APPROXIMATION OF MODULUS OF THE MAPPING FUNCTION 71 §4.4. APPROXIMATION OF MODULUS OF MAPPING FUNCTION, CONTINUED 74 §4.5. DEGREE OF CONVERGENCE. SUFFICIENT CONDITIONS 75 §4.6. DEGREE OF CONVERGENCE. NECESSARY CONDITIONS. OVERCONVERGENCE 77 §4.7. MAXIMAL CONVERGENCE 79 §4.8. EXACT REGIONS OF UNIFORM CONVERGENCE 88 §4.9. APPROXIMATION ON MORE GENERAL POINT SETS (IRREGULAR CASE) 85 VII VLLL TABLE OF CONTENTS CHAPTER V BEST APPROXIMATION BY POLYNOMIALS §5.1. TCHEBYEHEFF APPROXIMATION 89 §5.2. APPROXIMATION MEASURED BY A LINE INTEGRAL 91 §5.3. APPROXIMATION MEASURED BY A SURFACE INTEGRAL 95 §5.4. APPROXIMATION MEASURED BY A LINE INTEGRAL AFTER CONFORMAL MAPPING OF COM- PLEMENT ,98 §5.5. APPROXIMATION MEASURED BY A LINE INTEGRAL AFTER CONFORMAL MAPPING OF INTERIOR. 100 §5.6. POINT SETS WITH INFINITELY MANY COMPONENTS 102 §5.7. GENERALITY OF WEIGHT FUNCTIONS 104 §5.8. APPROXIMATION OF FUNCTIONS NOT ANALYTIC ON CLOSED SET CONSIDERED 107 CHAPTER VI ORTHOGONALITY AND LEAST SQUARES §6.1. ORTHOGONAL FUNCTIONS AND LEAST SQUARES ILL §6.2. ORTHOGONALIZATION 113 §6.3. RIESZ-FISCHER THEORY. 116 §6.4. CLOSURE 120 §6.5. POLYNOMIAL APPROXIMATION TO ANALYTIC FUNCTIONS 125 §6.6. ASYMPTOTIC PROPERTIES OF COEFFICIENTS 128 §6.7. REGIONS OF CONVERGENCE 131 §6.8. POLYNOMIALS ORTHOGONAL ON SEVERAL CURVES 133 §6.9. FUNCTIONS OF THE SECOND KIND 136 §6.10. FUNCTIONS OF CLASS H 2 141 §6.11. POLYNOMIALS IN Z AND 1/Z 143 §6.12. AN EXTREMAL PROBLEM, LINE INTEGRALS 146 §6.13. AN EXTREMAL PROBLEM, SURFACE INTEGRALS 149 CHAPTER VII INTERPOLATION BY POLYNOMIALS §7.1. INTERPOLATION IN ROOTS OF UNITY 152 §7.2. A SUFFICIENT CONDITION FOR MAXIMAL CONVERGENCE 154 §7.3. A NECESSARY CONDITION FOR UNIFORM CONVERGENCE 159 §7.4. FURTHER CONDITIONS FOR MAXIMAL CONVERGENCE 162 §7.5. UNIFORM DISTRIBUTION OF POINTS 164 §7.6. INTERPOLATION IN POINTS UNIFORMLY DISTRIBUTED 167 §7.7. POINTS OF INTERPOLATION WITH EXTREMAL PROPERTIES 170 §7.8. EXISTENCE OF POLYNOMIALS CONVERGING MAXIMALLY (SHEN) 173 §7.9. A SYNTHESIS OF INTERPOLATION AND TCHEBYCHEFF APPROXIMATION 175 §7.10. LEAST SQUARES AND INTERPOLATION IN ROOTS OF UNITY 178 CHAPTER VIII & INTERPOLATION BY RATIONAL FUNCTIONS §8.1. INTERPOLATION FORMULAS 184 §8.2. SEQUENCES AND SERIES OF INTERPOLATION 188 §8.3. DUALITY: GENERAL THEOREMS 193 §8.4. DUALITY: ILLUSTRATIONS 199 §8.5. DUALITY AND SERIES OF INTERPOLATION 203 §8.6. ILLUSTRATIONS 206 §8.7. HARMONIC FUNCTIONS AS GENERATING FUNCTIONS 209 §8.8. HARMONIC FUNCTIONS AS GENERATING FUNCTIONS, CONTINUED 212 TABLE OF CONTENTS IX §8.9. GEOMETRIC CONDITIONS ON GIVEN POINTS 218 §8.10. GEOMETRIC CONDITIONS, CONTINUATION 221 CHAPTER IX APPROXIMATION BY RATIONAL FUNCTIONS §9.1. LEAST SQUARES ON THE UNIT CIRCLE AND INTERPOLATION 224 §9.2. UNIT CIRCLE. CONVERGENCE THEOREMS 228 §9.3. UNIT CIRCLE. OTHER MEASURES OF APPROXIMATION 231 §9.4. UNIT CIRCLE. ASYMPTOTIC CONDITIONS ON POLES 235 §9.5. APPLICATIONS 239 §9.6. POLES WITH LIMIT POINTS ON CIRCUMFERENCE 243 §9.7. GENERAL POINT SETS; DEGREE OF CONVERGENCE 249 §9.8. GENERAL POINT SETS; BEST APPROXIMATION 252 §9.9. EXTENSIONS 257 §9.10. GENERAL POINT SETS; ASYMPTOTIC CONDITIONS ON POLES 261 §9.11. OPERATIONS WITH ASYMPTOTIC CONDITIONS 265 §9.12. ASYMPTOTIC CONDITIONS UNDER CONFORMAL TRANSFORMATION 270 §9.13. FURTHER PROBLEMS 276 CHAPTER X INTERPOLATION AND FUNCTIONS ANALYTIC IN THE UNIT CIRCLE §10.1. THE BLASCHKE PRODUCT 281 §10.2. FUNCTIONS OF MODULUS NOT GREATER THAN M 286 §10.3. FUNCTIONS OF LEAST MAXIMUM MODULUS 290 §10.4. CONVERGENCE OF MINIMIZING SEQUENCES 293 §10.5. TOTALITY OF INTERPOLATING FUNCTIONS 296 §10.6. CONDITIONS FOR UNIQUENESS 300 §10.7. FUNCTIONS OF CLASS H 2 304 CHAPTER XI APPROXIMATION WITH AUXILIARY CONDITIONS AND TO NON-ANALYTIC FUNCTIONS §11.1. APPROXIMATION WITH INTERPOLATION TO GIVEN FUNCTION 310 §11.2. INTERPOLATION TO GIVEN FUNCTION; DEGREE OF CONVERGENCE 314 §11.3. EXTREMAL PROBLEMS INVOLVING AUXILIARY CONDITIONS 318 §11.4. EXPANSION OF MAPPING FUNCTION 322 §11.5. APPROXIMATION ON A RECTIFIABLE JORDAN CURVE 328 §11.6. INTERPOLATION IN ROOTS OF UNITY 333 §11.7. TCHEBYCHEFF MEASURE OF APPROXIMATION; EXTREMAL PROBLEMS 335 §11.8. TCHEBYCHEFF APPROXIMATION BY POLYNOMIALS AND RATIONAL FUNCTIONS 338 §11.9. APPROXIMATION BY NON-VANISHING FUNCTIONS 343 CHAPTER XII C EXISTENCE AND UNIQUENESS OF RATIONAL FUNCTIONS OF BEST APPROXIMATION §12.1. SEQUENCES OF RATIONAL FUNCTIONS OF GIVEN DEGREE 348 §12.2. APPLICATION TO TCHEBYCHEFF APPROXIMATION 351 §12.3. RESTRICTION OF LOCATION OF POLES 353 §12.4. THE RATIONAL FUNCTION OF BEST APPROXIMATION NEED NOT BE UNIQUE 356 §12.5. INTEGRAL MEASURES OF APPROXIMATION 357 §12.6. APPROXIMATION WITH AUXILIARY CONDITIONS 360 §12.7. UNIQUENESS OF APPROXIMATING FUNCTIONS WITH PREASSIGNED POLES 361 X TABLE OF CONTENTS APPENDIX §A1. POSSIBILITY OF APPROXIMATION OF POLYNOMIALS 367 §A2. APPROXIMATION BY POLYNOMIALS. CONTINUITY CONDITIONS 371 §A3. INTERPOLATION AND APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS 373 §A4. THE CONVERGENCE OF SEQUENCES OF RATIONAL FUNCTIONS OF BEST APPROXIMATION WITH SOME FREE POLES 378 BIBLIOGRAPHY . * 383 INDEX 397
any_adam_object 1
author Walsh, Joseph L. 1895-1973
author_GND (DE-588)121999017
author_facet Walsh, Joseph L. 1895-1973
author_role aut
author_sort Walsh, Joseph L. 1895-1973
author_variant j l w jl jlw
building Verbundindex
bvnumber BV006247661
callnumber-first Q - Science
callnumber-label QA281
callnumber-raw QA281
callnumber-search QA281
callnumber-sort QA 3281
callnumber-subject QA - Mathematics
classification_rvk SK 470
SK 750
ctrlnum (OCoLC)950945
(DE-599)BVBBV006247661
dewey-full 517.21
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 517 - [Unassigned]
dewey-raw 517.21
dewey-search 517.21
dewey-sort 3517.21
dewey-tens 510 - Mathematics
discipline Mathematik
edition 5. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02547nam a2200625 cb4500</leader><controlfield tag="001">BV006247661</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110217 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930210s1969 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821810200</subfield><subfield code="9">0-821-81020-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006247661</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA281</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">517.21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walsh, Joseph L.</subfield><subfield code="d">1895-1973</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121999017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpolation and approximation by rational functions in the complex domain</subfield><subfield code="c">by J. L. Walsh</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">1969</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 405 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Colloquium publications</subfield><subfield code="v">20</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funcoes Algebricas</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series, Infinite</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rationale Funktion</subfield><subfield code="0">(DE-588)4225679-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rationale Funktion</subfield><subfield code="0">(DE-588)4225679-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Rationale Funktion</subfield><subfield code="0">(DE-588)4225679-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Rationale Funktion</subfield><subfield code="0">(DE-588)4225679-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Colloquium publications</subfield><subfield code="v">20</subfield><subfield code="w">(DE-604)BV035417609</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003945148&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003945148</subfield></datafield></record></collection>
id DE-604.BV006247661
illustrated Not Illustrated
indexdate 2024-12-23T12:03:43Z
institution BVB
isbn 0821810200
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003945148
oclc_num 950945
open_access_boolean
owner DE-739
DE-355
DE-BY-UBR
DE-824
DE-384
DE-706
owner_facet DE-739
DE-355
DE-BY-UBR
DE-824
DE-384
DE-706
physical X, 405 S.
publishDate 1969
publishDateSearch 1969
publishDateSort 1969
publisher American Math. Soc.
record_format marc
series Colloquium publications
series2 Colloquium publications
spellingShingle Walsh, Joseph L. 1895-1973
Interpolation and approximation by rational functions in the complex domain
Colloquium publications
Funcoes Algebricas larpcal
Functions
Interpolation
Series, Infinite
Approximationstheorie (DE-588)4120913-8 gnd
Komplexität (DE-588)4135369-9 gnd
Rationale Funktion (DE-588)4225679-3 gnd
Approximation (DE-588)4002498-2 gnd
Interpolation (DE-588)4162121-9 gnd
subject_GND (DE-588)4120913-8
(DE-588)4135369-9
(DE-588)4225679-3
(DE-588)4002498-2
(DE-588)4162121-9
title Interpolation and approximation by rational functions in the complex domain
title_auth Interpolation and approximation by rational functions in the complex domain
title_exact_search Interpolation and approximation by rational functions in the complex domain
title_full Interpolation and approximation by rational functions in the complex domain by J. L. Walsh
title_fullStr Interpolation and approximation by rational functions in the complex domain by J. L. Walsh
title_full_unstemmed Interpolation and approximation by rational functions in the complex domain by J. L. Walsh
title_short Interpolation and approximation by rational functions in the complex domain
title_sort interpolation and approximation by rational functions in the complex domain
topic Funcoes Algebricas larpcal
Functions
Interpolation
Series, Infinite
Approximationstheorie (DE-588)4120913-8 gnd
Komplexität (DE-588)4135369-9 gnd
Rationale Funktion (DE-588)4225679-3 gnd
Approximation (DE-588)4002498-2 gnd
Interpolation (DE-588)4162121-9 gnd
topic_facet Funcoes Algebricas
Functions
Interpolation
Series, Infinite
Approximationstheorie
Komplexität
Rationale Funktion
Approximation
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003945148&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV035417609
work_keys_str_mv AT walshjosephl interpolationandapproximationbyrationalfunctionsinthecomplexdomain