On spline approximation for a class of non-compact integral equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Elschner, Johannes (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin 1988
Schriftenreihe:Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report 1988,9.
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV006123651
003 DE-604
005 20060202
007 t|
008 921030s1988 xx |||| 00||| eng d
035 |a (OCoLC)21633639 
035 |a (DE-599)BVBBV006123651 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-29T  |a DE-91G  |a DE-11 
050 0 |a QA431 
082 0 |a 515.45 
084 |a SI 109  |0 (DE-625)143079:  |2 rvk 
100 1 |a Elschner, Johannes  |e Verfasser  |4 aut 
245 1 0 |a On spline approximation for a class of non-compact integral equations 
264 1 |a Berlin  |c 1988 
300 |a IV, 78 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report  |v 1988,9. 
650 4 |a Collocation methods 
650 4 |a Galerkin methods 
650 4 |a Integral equations  |x Numerical solutions 
650 4 |a Spline theory 
650 4 |a Wiener-Hopf equations 
650 0 7 |a Wiener-Hopf-Gleichung  |0 (DE-588)4189866-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Spline-Approximation  |0 (DE-588)4182394-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Wiener-Hopf-Gleichung  |0 (DE-588)4189866-7  |D s 
689 0 1 |a Spline-Approximation  |0 (DE-588)4182394-1  |D s 
689 0 |5 DE-604 
830 0 |a Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report  |v 1988,9.  |w (DE-604)BV005631778  |9 1988,9 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003868829 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111 2001 B 6009
DE-BY-TUM_katkey 576650
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010063504
_version_ 1820856810109665280
any_adam_object
author Elschner, Johannes
author_facet Elschner, Johannes
author_role aut
author_sort Elschner, Johannes
author_variant j e je
building Verbundindex
bvnumber BV006123651
callnumber-first Q - Science
callnumber-label QA431
callnumber-raw QA431
callnumber-search QA431
callnumber-sort QA 3431
callnumber-subject QA - Mathematics
classification_rvk SI 109
ctrlnum (OCoLC)21633639
(DE-599)BVBBV006123651
dewey-full 515.45
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.45
dewey-search 515.45
dewey-sort 3515.45
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01450nam a2200421 cb4500</leader><controlfield tag="001">BV006123651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060202 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921030s1988 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21633639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006123651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA431</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.45</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 109</subfield><subfield code="0">(DE-625)143079:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elschner, Johannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On spline approximation for a class of non-compact integral equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 78 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Karl-Weierstrass-Institut für Mathematik &lt;Berlin, Ost&gt;: Report</subfield><subfield code="v">1988,9.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collocation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galerkin methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wiener-Hopf equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wiener-Hopf-Gleichung</subfield><subfield code="0">(DE-588)4189866-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wiener-Hopf-Gleichung</subfield><subfield code="0">(DE-588)4189866-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Karl-Weierstrass-Institut für Mathematik &lt;Berlin, Ost&gt;: Report</subfield><subfield code="v">1988,9.</subfield><subfield code="w">(DE-604)BV005631778</subfield><subfield code="9">1988,9</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003868829</subfield></datafield></record></collection>
id DE-604.BV006123651
illustrated Not Illustrated
indexdate 2024-12-23T12:01:25Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003868829
oclc_num 21633639
open_access_boolean
owner DE-703
DE-29T
DE-91G
DE-BY-TUM
DE-11
owner_facet DE-703
DE-29T
DE-91G
DE-BY-TUM
DE-11
physical IV, 78 S.
publishDate 1988
publishDateSearch 1988
publishDateSort 1988
record_format marc
series Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report
series2 Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report
spellingShingle Elschner, Johannes
On spline approximation for a class of non-compact integral equations
Karl-Weierstrass-Institut für Mathematik <Berlin, Ost>: Report
Collocation methods
Galerkin methods
Integral equations Numerical solutions
Spline theory
Wiener-Hopf equations
Wiener-Hopf-Gleichung (DE-588)4189866-7 gnd
Spline-Approximation (DE-588)4182394-1 gnd
subject_GND (DE-588)4189866-7
(DE-588)4182394-1
title On spline approximation for a class of non-compact integral equations
title_auth On spline approximation for a class of non-compact integral equations
title_exact_search On spline approximation for a class of non-compact integral equations
title_full On spline approximation for a class of non-compact integral equations
title_fullStr On spline approximation for a class of non-compact integral equations
title_full_unstemmed On spline approximation for a class of non-compact integral equations
title_short On spline approximation for a class of non-compact integral equations
title_sort on spline approximation for a class of non compact integral equations
topic Collocation methods
Galerkin methods
Integral equations Numerical solutions
Spline theory
Wiener-Hopf equations
Wiener-Hopf-Gleichung (DE-588)4189866-7 gnd
Spline-Approximation (DE-588)4182394-1 gnd
topic_facet Collocation methods
Galerkin methods
Integral equations Numerical solutions
Spline theory
Wiener-Hopf equations
Wiener-Hopf-Gleichung
Spline-Approximation
volume_link (DE-604)BV005631778
work_keys_str_mv AT elschnerjohannes onsplineapproximationforaclassofnoncompactintegralequations