Maxima and minima without calculus

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Niven, Ivan 1915-1999 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Washington, DC Math. Assoc. of America 1981
Schriftenreihe:The Dolciani mathematical expositions 6
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV006004599
003 DE-604
005 20140528
007 t|
008 921030s1981 xx d||| |||| 00||| eng d
020 |a 088385306X  |9 0-88385-306-X 
020 |a 0883853000  |9 0-88385-300-0 
035 |a (OCoLC)154176174 
035 |a (DE-599)BVBBV006004599 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-739  |a DE-20  |a DE-824  |a DE-29T  |a DE-19  |a DE-83  |a DE-188  |a DE-706 
050 0 |a QA306 
082 0 |a 511/.66  |2 19 
082 0 |a 511.66 
084 |a SK 660  |0 (DE-625)143251:  |2 rvk 
084 |a SK 870  |0 (DE-625)143265:  |2 rvk 
084 |a 26Dxx  |2 msc 
100 1 |a Niven, Ivan  |d 1915-1999  |e Verfasser  |0 (DE-588)115101217  |4 aut 
245 1 0 |a Maxima and minima without calculus  |c by Ivan Niven 
264 1 |a Washington, DC  |b Math. Assoc. of America  |c 1981 
300 |a XV, 303 S.  |b graph.Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a The Dolciani mathematical expositions  |v 6 
650 4 |a Maxima and minima 
650 0 7 |a Extremwert  |0 (DE-588)4137272-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Extremwert  |0 (DE-588)4137272-4  |D s 
689 0 |5 DE-604 
830 0 |a The Dolciani mathematical expositions  |v 6  |w (DE-604)BV001900740  |9 6 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003773934&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003773934 

Datensatz im Suchindex

_version_ 1819701308434677760
adam_text CONTENTS PAGE PREFACE ix CHAPTER ONE. BACKGROUND MATERIAL 1 1.1. Language and Notation 1 1.2. Geometry and Trigonometry 4 1.3. Areas and Volumes 7 1.4. Inequalities 11 1.5. The Sigma Notation 13 CHAPTER TWO. SIMPLE ALGEBRAIC RESULTS 15 2.1. Sums and Products 15 2.2. Any Square Is Positive or Zero 16 2.3. The Inequality of the Arithmetic Geometric Means 20 2.4. An Alternative Approach 23 2.5. Cauchy s Proof 24 2.6. Techniques for Finding Extrema 26 2.7. The Inequality of the Arithmetic Harmonic Means 36 2.8. TheNumbere 38 2.9. Cauchy s Inequality 41 CHAPTER THREE. ELEMENTARY GEOMETRIC QUESTIONS 47 3.1. Introduction 47 3.2. Triangles 47 3.3. Quadrilaterals 50 3.4. Miscellaneous Results in Geometry 55 3.5. The Reflection Principle 63 3.6. Equivalent Results 67 3.7. Auxiliary Circles 70 CHAPTER FOUR. ISOPERIMETRIC RESULTS 77 4.1. Some Definitions 77 4.2. Polygons 79 4.3. The Isoperimetric Theorem 81 4.4. The Isoperimetric Quotient 85 4.5. Existence and Uniqueness 87 xiii xiv MAXIMA AND MINIMA WITHOUT CALCULUS CHAPTER FIVE. BASIC TRIGONOMETRIC INEQUALITIES 92 5.1. A New Direction 92 5.2. Some Trigonometric Inequalities 92 5.3. The Jensen Inequalities 97 5.4. Other Trigonometric Functions 100 5.5. Extreme Values of a sinS + ft cos 0 103 5.6. Tacking Against a Headwind 106 CHAPTER SIX. POLYGONS INSCRIBED AND CIRCUMSCRIBED Ill 6.1. Introduction Ill 6.2. Regular Polygons 113 6.3. Inscribed and Circumscribed Polygons 115 6.4. A Definition of v 120 6.5. Circles Versus Regular Polygons 123 CHAPTER SEVEN. ELLIPSES 126 7.1. A Basic Mapping 126 7.2. Parametric Equations 129 7.3. Polygons Inscribed in an Ellipse 130 7.4. Circumscribed Polygons 132 7.5. Tangent Lines and Extreme Values 133 7.6. Shortest Distance from a Point to a Curve 137 7.7. Extreme Points on an Ellipse 141 CHAPTER EIGHT. THE BEES AND THEIR HEXAGONS 144 8.1. The Two Problems 144 8.2. Tiling by Regular Polygons 147 8.3. Nonconvex Polygons 148 8.4. Tiling by Convex Polygons 149 8.5. The Summing up 153 CHAPTER NINE. FURTHER GEOMETRIC RESULTS 156 9.1. Introduction 156 9.2. A Problem of Fermat 156 9.3. The Inscribed Triangle 162 9.4. A Theorem of Erdds and Mordell 168 9.5. Lines of Division 171 9.6. Enclosing a Convex Region in a Rectangle 175 CHAPTER TEN. APPLIED AND MISCELLANEOUS PROBLEMS 179 10.1. Lines of Best Fit 179 10.2. The Least Squares Line in General 181 10.3. The Most Likely Number of Occurrences 183 10.4. Experimental Solutions of Minimal Problems 188 10.5. Ptolemy s Theorem 193 10.6. The Refraction of Light 195 10.7. Time and Distance Problems 198 CONTENTS XV 10.8. Minimax Problems 203 10.9. The Jeep Crossing the Desert 204 CHAPTER ELEVEN. EUCLIDEAN THREE SPACE 211 11.1. Preliminary Results 211 11.2. The Isoperimetric Theorem for Tetrahedra 213 11.3. Inscribed and Circumscribed Spheres of a Tetrahedron 217 11.4. Shortest Paths on a Sphere 218 CHAPTER TWELVE. ISOPERIMETRIC RESULTS NOT ASSUMING EXISTENCE . . 226 12.1. The Need for a Closer Study 226 12.2. The Inner Parallel Polygon 227 12.3. The Isoperimetric Theorem 231 12.4. The Isoperimetric Theorem for Polygons 234 12.5. Polygons with Prescribed Sides 236 POSTSCRIPT ON CALCULUS 239 SOLUTIONS OF PROBLEMS 244 REFERENCES 293 INDEX 299
any_adam_object 1
author Niven, Ivan 1915-1999
author_GND (DE-588)115101217
author_facet Niven, Ivan 1915-1999
author_role aut
author_sort Niven, Ivan 1915-1999
author_variant i n in
building Verbundindex
bvnumber BV006004599
callnumber-first Q - Science
callnumber-label QA306
callnumber-raw QA306
callnumber-search QA306
callnumber-sort QA 3306
callnumber-subject QA - Mathematics
classification_rvk SK 660
SK 870
ctrlnum (OCoLC)154176174
(DE-599)BVBBV006004599
dewey-full 511/.66
511.66
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.66
511.66
dewey-search 511/.66
511.66
dewey-sort 3511 266
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01597nam a2200421 cb4500</leader><controlfield tag="001">BV006004599</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140528 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921030s1981 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">088385306X</subfield><subfield code="9">0-88385-306-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883853000</subfield><subfield code="9">0-88385-300-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)154176174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006004599</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA306</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.66</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.66</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26Dxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niven, Ivan</subfield><subfield code="d">1915-1999</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115101217</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maxima and minima without calculus</subfield><subfield code="c">by Ivan Niven</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">Math. Assoc. of America</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 303 S.</subfield><subfield code="b">graph.Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">The Dolciani mathematical expositions</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">The Dolciani mathematical expositions</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV001900740</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003773934&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003773934</subfield></datafield></record></collection>
id DE-604.BV006004599
illustrated Illustrated
indexdate 2024-12-23T11:58:47Z
institution BVB
isbn 088385306X
0883853000
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003773934
oclc_num 154176174
open_access_boolean
owner DE-703
DE-739
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-188
DE-706
owner_facet DE-703
DE-739
DE-20
DE-824
DE-29T
DE-19
DE-BY-UBM
DE-83
DE-188
DE-706
physical XV, 303 S. graph.Darst.
publishDate 1981
publishDateSearch 1981
publishDateSort 1981
publisher Math. Assoc. of America
record_format marc
series The Dolciani mathematical expositions
series2 The Dolciani mathematical expositions
spellingShingle Niven, Ivan 1915-1999
Maxima and minima without calculus
The Dolciani mathematical expositions
Maxima and minima
Extremwert (DE-588)4137272-4 gnd
subject_GND (DE-588)4137272-4
title Maxima and minima without calculus
title_auth Maxima and minima without calculus
title_exact_search Maxima and minima without calculus
title_full Maxima and minima without calculus by Ivan Niven
title_fullStr Maxima and minima without calculus by Ivan Niven
title_full_unstemmed Maxima and minima without calculus by Ivan Niven
title_short Maxima and minima without calculus
title_sort maxima and minima without calculus
topic Maxima and minima
Extremwert (DE-588)4137272-4 gnd
topic_facet Maxima and minima
Extremwert
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003773934&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV001900740
work_keys_str_mv AT nivenivan maximaandminimawithoutcalculus