Global optimization deterministic approaches

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Horst, Reiner (VerfasserIn), Tuy, Hoang (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin u.a. Springer 1993
Ausgabe:2., rev. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV005883599
003 DE-604
005 19930609
007 t
008 921123s1993 gw d||| |||| 00||| eng d
020 |a 3540560947  |9 3-540-56094-7 
020 |a 0387560947  |9 0-387-56094-7 
035 |a (OCoLC)612159336 
035 |a (DE-599)BVBBV005883599 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-12  |a DE-384  |a DE-91  |a DE-91G  |a DE-634  |a DE-83  |a DE-188 
050 0 |a QA402.5 
082 0 |a 519.3  |2 20 
084 |a SK 870  |0 (DE-625)143265:  |2 rvk 
084 |a MAT 910f  |2 stub 
100 1 |a Horst, Reiner  |e Verfasser  |4 aut 
245 1 0 |a Global optimization  |b deterministic approaches  |c Reiner Horst ; Hoang Tuy 
250 |a 2., rev. ed. 
264 1 |a Berlin u.a.  |b Springer  |c 1993 
300 |a XVI, 698 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 657 - 690 
650 7 |a Optimaliseren  |2 gtt 
650 7 |a Optimisation mathématique  |2 ram 
650 7 |a Programmation non linéiare  |2 ram 
650 7 |a minimisation concave  |2 inriac 
650 7 |a méthode approximation  |2 inriac 
650 7 |a méthode branch and bound  |2 inriac 
650 7 |a méthode décomposition  |2 inriac 
650 7 |a méthode partition  |2 inriac 
650 7 |a optimisation globale  |2 inriac 
650 4 |a Mathematical optimization 
650 4 |a Nonlinear programming 
650 0 7 |a Globale Optimierung  |0 (DE-588)4140067-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Globale Optimierung  |0 (DE-588)4140067-7  |D s 
689 0 |5 DE-604 
700 1 |a Tuy, Hoang  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003684632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-003684632 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 910f 2001 A 9811(2)
DE-BY-TUM_katkey 572118
DE-BY-TUM_media_number 040020295594
_version_ 1816711608905236480
adam_text CONTENTS PART A: INTRODUCTION AND BASIC TECHNIQUES 1 CHAPTER I. SOME IMPORTANT CLASSES OF GLOBAL OPTIMIZATION PROBLEMS 3 1. Global Optimization 3 2. Concave Minimization 9 2.1. Definition and Basic Properties 9 2.2. Brief Survey of Direct Applications 12 2.3. Integer Programming and Concave Minimization 14 2.4. Bilinear Programming and Concave Minimization 19 2.5. Complementarity Problems and Concave Minimization 23 2.6. Max—Min Problems and Concave Minimization 25 3. D.C. Programming and Reverse Convex Constraints 26 3.1. D.C. Programming: Basic Properties 26 3.2. D.C. Programming: Applications 32 3.3. Reverse Convex Constraints 36 3.4. Canonical D.C. Programming Problems 39 4. Lipschitzian Optimization and Systems of Equations and Inequalities 42 4.1. Lipschitzian Optimization 42 4.2. Systems of Equations and Inequalities 46 CHAPTER II. OUTER APPROXIMATION 51 1. Basic Outer Approximation Method 51 2. Outer Approximation by Convex Polyhedral Sets 56 3. Constraint Dropping Strategies 65 4. On Solving the Subproblems (Qk) 68 4.1. Finding an Initial Polytope B1 and its Vertex Set V1 69 4.2. Computing New Vertices and New Extreme Directions 71 4.3. Identifying Redundant Constraints 82 CHAPTER m. CONCAVITY CUTS 85 1. Concept of a Valid Cut 85 2. Valid Cuts in the Degenerate Case 91 3. Convergence of Cutting Procedures 95 4. Concavity Cuts for Handling Reverse Convex Constraints 100 5. A Class of Generalized Concavity Cuts 104 6. Cats Using Negative Edge Extensions 108 CHAPTER IV. BRANCH AND BOUND 111 1. A Prototype Branch and Bound Method 111 2. Finiteness and Convergence Conditions 121 3. Typical Partition Sets and their Refinement 132 3.1. Simplices 132 3.2. Rectangles and Polyhedral Cones 137 4. Lower Bounds 139 4.1. Lipschitzian Optimization 140 4.2. Vertex Minima 141 4.3. Convex Subfunctionals 142 4.4. Duality 153 4.5. Consistency 158 5. Deletion by Infeasibility 163 6. Restart Branch and Bound Algorithm 169 PART B: CONCAVE MINIMIZATION 173 CHAPTER V. CUTTING METHODS 175 1. A Pure Cutting Algorithm 175 1.1. Valid Cuts and a Sufficient Condition for Global Optimality 176 1.2. Outline of the Method 181 2. Facial Cut Algorithm 184 2.1. The Basic Idea 184 2.2. Finding an Extreme Face of D Relative to M 186 2.3. Facial Valid Cuts 190 2.4. A Finite Cutting Algorithm 192 3. Cut and Split Algorithm 195 3.1. Partition of a Cone 196 3.2. Outline of the Method 197 3.3. Remarks 200 4. Generating Deep Cuts: The Case of Concave Quadratic Functionals 205 4.1. A Hierarchy of Valid Cuts 205 4.2. Konno s Cutting Method for Concave Quadratic Programming 211 4.3. Bilinear Programming Cuts 216 CHAPTER VI. SUCCESSIVE APPROXIMATION METHODS 219 1. Outer Approximation Algorithms 219 1.1. Linearly Constrained Problem 220 1.2. Problems with Convex Constraints 228 1.3. Reducing the Sizes of the Relaxed Problems 233 2. Inner Approximation 237 2.1. The (DG) Problem 238 2.2. The Concept of Polyhedral Annexation 239 2.3. Computing the Facets of a Polytope 241 2.4. A Polyhedral Annexation Algorithm 244 2.5. Relations to Other Methods 253 2.6. Extensions 256 3. Convex Underestimation 259 3.1. Relaxation and Successive Underestimation 260 3.2. The Falk and Hoffman Algorithm 262 3.3. Rosen s Algorithm 265 4. Concave Polyhedral Underestimation 271 4.1. Outline of the Method 271 4.2. Computation of the Concave Underestimators 273 4.3. Computation of the Nonvertical Facets 274 4.4. Polyhedral Underestimation Algorithm 277 4.5. Alternative Interpretation 279 4.6. Separable Problems 281 CHAPTER VH. SUCCESSIVE PARTITION METHODS 286 1. Conical Algorithms 286 1.1. The Normal Conical Subdivision Process 287 1.2. The Main Subroutine 289 1.3. Construction of Normal Subdivision Processes 291 1.4. The Basic NCS Process 296 1.5. The Normal Conical Algorithm 299 1.6. Remarks Concerning Implementation 303 1.7. Example 306 1.8. Alternative Variants 309 1.9. Concave Minimization with Convex Constraints 314 1.10. Unbounded Feasible Domain 319 1.11. A Class of Exhaustive Subdivision Processes 320 1.12. Exhaustive Nondegenerate Subdivision Processes 326 2. Simplicial Algorithms 333 2.1. Normal Simplicial Subdivision Processes 334 2.2. Normal Simplicial Algorithm 335 2.3. Construction of an NSS Process 337 2.4. The Basic NSS Process 339 2.5. Normal Simplicial Algorithm for Problems with Convex Constraints 341 3. An Exact Simplicial Algorithm 344 3.1. Simplicial Subdivision of a Polytope 344 3.2. A Finite Branch and Bound Procedure 346 3.3. A Modified ES Algorithm 348 3.4. Unbounded Feasible Set 352 4. Rectangular Algorithms 355 4.1. Normal Rectangular Algorithm 357 4.2. Construction of an NRS Process 359 4.3. Specialization to Concave Quadratic Programming 362 4.4. Example 367 CHAPTER Vm. DECOMPOSITION OP LARGE SCALE PROBLEMS 371 1. Decomposition Framework 372 2. Branch and Bound Approach 374 2.1. Normal Simplicial Algorithm 375 2.2. Normal Rectangular Algorithm 378 2.3. Normal Conical Algorithm 380 3. Polyhedral Underestimation Method 381 3.1. Nonseparable Problems 381 3.2. Separable Problems 383 4. Decomposition by Outer Approximation 390 4.1. Basic Idea 391 4.2. Decomposition Algorithm 392 4.3. An Extension 398 4.4. Outer Approximation Versus Successive Partition 402 4.5. Outer Approximation Combined with Branch and Bound 406 5. Decomposition of Concave Minimization Problems over Networks 410 5.1. The Minimum Concave Cost Flow Problem 410 5.2. The Single Source Uncapacitated Minimum Concave Cost Flow Problem (SUCF) 414 5.3. Decomposition Method for (SUCF) 420 5.4. Extension 430 CHAPTER IX. SPECIAL PROBLEMS OF CONCAVE MINIMIZATION 434 1. Bilinear Programming 434 1.1. Basic Properties 435 1.2. Cutting Plane Method 438 1.3. Polyhedral Annexation 443 1.4. Conical Algorithm 445 1.5. Outer Approximation Method 449 2. Complementarity Problems 456 2.1. Basic Properties 457 2.2. Polyhedral Annexation Method for the Linear Complementarity Problem (LCP) 459 2.3. Conical Algorithm for the (LCP) 462 2.4. Other Global Optimization Approaches to (LCP) 470 2.5. The Concave Complementarity Problem 473 3. Parametric Concave Programming 476 3.1. Basic Properties 478 3.2. Outer Approximation Method for (LRCP) 484 3.3. Methods Based on the Edge Property 487 3.4. Conical Algorithms for (LRCP) 494 PART C: GENERAL NONLINEAR PROBLEMS 503 CHAPTER X. D.C. PROGRAMMING 505 1. Outer Approximation Methods for Solving the Canonical D.C. Programming Problem 505 1.1. Duality between the Objective and the Constraints 506 1.2. Outer Approximation Algorithms for Canonical D.C. Problems 512 1.3. Outer Approximation for Solving Noncanonical D.C. Problems 527 2. Branch and Bound Methods 539 3. Solving D.C. Problems by a Sequence of Linear Programs and Line Searches 544 4. Some Special D.C. Problems and Applications 558 4.1. The Design Centering Problem 558 4.2. The Diamond Cutting Problem 567 4.3. Biconvex Programming and Related Problems 577 CHAPTER XI. LIPSCHITZ AND CONTINUOUS OPTIMIZATION 587 1. Brief Introduction into the Global Minimization of Univariate Lipschitz Functions 588 1.1. Saw Tooth Covers 588 1.2. Algorithms for Solving the Univariate Lipschitz—Problem 593 2. Branch and Bound Algorithms 600 2.1. Branch and Bound Interpretation of Piyavskii s Univariate Algorithm 601 2.2. Branch and Bouad Methods for Minimizing a Lipschitz Function over an n dimensional Rectangle 605 2.3. Branch and Bound Methods for Solving Lipschitz Optimization Problems with General Constraints 616 2.4. Global Optimization of Concave Functions Subject to Separable Quadratic Constraints 617 3. Ontei Approximation 629 4. The Relief Indicator Method 638 4.1. Separators for f on D 638 4.2. A Global Optimally Criterion 642 4.3. The Relief Indicator Method 646 References 657 Notation 691 Index 694
any_adam_object 1
author Horst, Reiner
Tuy, Hoang
author_facet Horst, Reiner
Tuy, Hoang
author_role aut
aut
author_sort Horst, Reiner
author_variant r h rh
h t ht
building Verbundindex
bvnumber BV005883599
callnumber-first Q - Science
callnumber-label QA402
callnumber-raw QA402.5
callnumber-search QA402.5
callnumber-sort QA 3402.5
callnumber-subject QA - Mathematics
classification_rvk SK 870
classification_tum MAT 910f
ctrlnum (OCoLC)612159336
(DE-599)BVBBV005883599
dewey-full 519.3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.3
dewey-search 519.3
dewey-sort 3519.3
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2., rev. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01961nam a2200541 c 4500</leader><controlfield tag="001">BV005883599</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19930609 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921123s1993 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540560947</subfield><subfield code="9">3-540-56094-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387560947</subfield><subfield code="9">0-387-56094-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)612159336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005883599</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Horst, Reiner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global optimization</subfield><subfield code="b">deterministic approaches</subfield><subfield code="c">Reiner Horst ; Hoang Tuy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 698 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 657 - 690</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimisation mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmation non linéiare</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">minimisation concave</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode approximation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode branch and bound</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode décomposition</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode partition</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">optimisation globale</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuy, Hoang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003684632&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003684632</subfield></datafield></record></collection>
id DE-604.BV005883599
illustrated Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 3540560947
0387560947
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003684632
oclc_num 612159336
open_access_boolean
owner DE-12
DE-384
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
owner_facet DE-12
DE-384
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
physical XVI, 698 S. graph. Darst.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer
record_format marc
spellingShingle Horst, Reiner
Tuy, Hoang
Global optimization deterministic approaches
Optimaliseren gtt
Optimisation mathématique ram
Programmation non linéiare ram
minimisation concave inriac
méthode approximation inriac
méthode branch and bound inriac
méthode décomposition inriac
méthode partition inriac
optimisation globale inriac
Mathematical optimization
Nonlinear programming
Globale Optimierung (DE-588)4140067-7 gnd
subject_GND (DE-588)4140067-7
title Global optimization deterministic approaches
title_auth Global optimization deterministic approaches
title_exact_search Global optimization deterministic approaches
title_full Global optimization deterministic approaches Reiner Horst ; Hoang Tuy
title_fullStr Global optimization deterministic approaches Reiner Horst ; Hoang Tuy
title_full_unstemmed Global optimization deterministic approaches Reiner Horst ; Hoang Tuy
title_short Global optimization
title_sort global optimization deterministic approaches
title_sub deterministic approaches
topic Optimaliseren gtt
Optimisation mathématique ram
Programmation non linéiare ram
minimisation concave inriac
méthode approximation inriac
méthode branch and bound inriac
méthode décomposition inriac
méthode partition inriac
optimisation globale inriac
Mathematical optimization
Nonlinear programming
Globale Optimierung (DE-588)4140067-7 gnd
topic_facet Optimaliseren
Optimisation mathématique
Programmation non linéiare
minimisation concave
méthode approximation
méthode branch and bound
méthode décomposition
méthode partition
optimisation globale
Mathematical optimization
Nonlinear programming
Globale Optimierung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003684632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT horstreiner globaloptimizationdeterministicapproaches
AT tuyhoang globaloptimizationdeterministicapproaches