Combinatorics and partially ordered sets dimension theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Trotter, William T. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Baltimore u.a. Johns Hopkins Univ. Pr. 1992
Schriftenreihe:Johns Hopkins Series in the mathematical sciences
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV005847502
003 DE-604
005 20101203
007 t
008 921116s1992 d||| |||| 00||| eng d
020 |a 0801844258  |9 0-8018-4425-8 
020 |a 0801869773  |9 0-8018-6977-3 
035 |a (OCoLC)24845497 
035 |a (DE-599)BVBBV005847502 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-12  |a DE-739  |a DE-29T  |a DE-83  |a DE-11  |a DE-634  |a DE-188 
050 0 |a QA164 
082 0 |a 511/.6  |2 20 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a 06A07  |2 msc 
084 |a 05-02  |2 msc 
100 1 |a Trotter, William T.  |e Verfasser  |4 aut 
245 1 0 |a Combinatorics and partially ordered sets  |b dimension theory  |c William T. Trotter 
264 1 |a Baltimore u.a.  |b Johns Hopkins Univ. Pr.  |c 1992 
300 |a XIV, 307 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Johns Hopkins Series in the mathematical sciences 
650 7 |a Analise combinatoria  |2 larpcal 
650 4 |a Analyse combinatoire 
650 4 |a Ensembles partiellement ordonnés 
650 4 |a Combinatorial analysis 
650 4 |a Partially ordered sets 
650 0 7 |a Halbgeordnete Menge  |0 (DE-588)4128951-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Dimensionstheorie  |0 (DE-588)4149935-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorische Analysis  |0 (DE-588)4164746-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 1 |a Halbgeordnete Menge  |0 (DE-588)4128951-1  |D s 
689 0 2 |a Dimensionstheorie  |0 (DE-588)4149935-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Kombinatorische Analysis  |0 (DE-588)4164746-4  |D s 
689 1 |5 DE-604 
689 2 0 |a Dimensionstheorie  |0 (DE-588)4149935-9  |D s 
689 2 |5 DE-604 
689 3 0 |a Halbgeordnete Menge  |0 (DE-588)4128951-1  |D s 
689 3 1 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 3 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003661581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-003661581 

Datensatz im Suchindex

_version_ 1804120037620973568
adam_text Contents Preface xi Chapter 1 Introduction to Dimension §1. Overview 1 §2. Basic Notation for Partially Ordered Sets 2 §3. Dilworth s Chain Covering Theorem 7 §4. Extensions and Realizers 9 §5. Standard Examples 12 §6. Alternating Cycles 14 §7. Dimension and Width 18 §8. Interpolation and Lifting 21 §9. Removal Theorems and Continuity 21 §10. Lexicographic Sums and Hiraguchi s Inequality 23 §11. Complements of Antichains 26 §12. Reversing Critical Pairs 29 Chapter 2 Crowns, Splits, Stacks, Sums, and Products §1. Overview 33 §2. Generalized Crowns 34 §3. Cartesian Products 38 §4. Bipartite Posets 46 §5. Splits and Quasi Realizers 48 §6. Stacks and Splits 51 §7. Kelly s Dimension Products 53 §8. Exponents and Distributive Lattices 54 Chapter 3 Characterization Problems for Posets, Lattices, Graphs, and Eamilies of Sets §1. Overview 57 §2. Comparability Graphs and Gallai s Theorem 58 §3. The 3 Irreducible Posets—Trotter and Moore s Method 62 §4. Planar Posets and Planar Aographs 66 §5. Planar Lattices 69 §6. The 3 Irreducible Posets—Kelly s Method 77 §7. Stacks and 3 Interval Irreducible Posets 81 vii viii Contents §8. Interval Graphs and Interval Orders 86 §9. Linear and Interval Families of Sets 88 §10. Boxes in R 90 §11. Circular Arc Graphs 92 §12. Characterizing Inequalities 93 Chapter 4 Hypergraph Coloring, Computational Complexity, and Irreducible Posets §1. Overview 97 §2. Hypergraph Coloring 98 §3. Irreducible Posets 102 §4. Embedding Posets and Kelly s Dimension Products 108 §5. Counting Irreducible Posets 112 Chapter 5 Planar Posets and Trees §1. Overview 113 §2. Planar Posets with a Zero 114 §3. Planar Posets with Arbitrary Dimension 118 §4. Repeated Splits and Amalgamations 119 §5. Chordal Graphs and Cycle Free Posets 122 Chapter 6 Planar Graphs, Planar Maps, and Convex Polytopes §1. Overview 127 §2. Schnyder s Dimension Theoretic Test for Planarity 128 §3. Convex Polytopes 132 §4. Normal Families of Paths 135 §5. Constructing Normal Families of Paths 142 §6. Convex Polytopes and Irreducible Posets 149 §7. Planar Multigraphs 151 Chapter 7 Probabilistic Methods in Dimension Theory §1. Overview 157 §2. Subposets of the Subset Lattice 158 §3. Posets of Bounded Degree 165 §4. The Furedi/Kahn Bounds 166 §5. Random Bipartite Posets 168 §6. Upper Bounds 169 §7. Lower Bounds 171 §8. The Dimension of a Random Labeled Poset 181 §9. Winkler s Model for Random Posets 186 Contents ix Chapter 8 Interval and Geometric Containment Orders §1. Overview 189 §2. Interval Orders and Semi orders 190 §3. Dimension Theory for Semi orders and Interval Orders 196 §4. Shift Graphs 197 §5. Ramsey Trails 201 §6. Interval Dimension 202 §7. Containment Orders 204 §8. Degrees of Freedom 209 §9. Circle Orders and Sphere Orders 210 Chapter 9 Greedy Dimension, Back Tracking, and Depth First Search §1. Overview 213 §2. The Jump Number Problem 214 §3. Algorithms for Linear Extensions 215 §4. Inequalities for Greedy Dimension 217 §5. Partitions and Constructions 224 §6. Super Greedy Extensions, Back Tracking, and Depth First Search 235 Chapter 10 Products of Chains of Bounded Length §1. Overview 247 §2. Embedding Posets in Cubes 247 §3. Matchings in Posets 249 §4. Removal Theorems for ^ Dimension 251 §5. Ramsey Theory for Posets 256 §6. The Maximum Dimension of a Lattice 258 Chapter 11 Large Minimal Realizers §1. Overview 261 §2. Minimal Realizers and Critical Digraphs 261 §3. Applications of the Rank Reformulation Theorem 268 §4. Generalizing Turan s Theorem 270 Appendix 285 Bibliography 287 Index 301
any_adam_object 1
author Trotter, William T.
author_facet Trotter, William T.
author_role aut
author_sort Trotter, William T.
author_variant w t t wt wtt
building Verbundindex
bvnumber BV005847502
callnumber-first Q - Science
callnumber-label QA164
callnumber-raw QA164
callnumber-search QA164
callnumber-sort QA 3164
callnumber-subject QA - Mathematics
classification_rvk SK 170
ctrlnum (OCoLC)24845497
(DE-599)BVBBV005847502
dewey-full 511/.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.6
dewey-search 511/.6
dewey-sort 3511 16
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02287nam a2200589 c 4500</leader><controlfield tag="001">BV005847502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921116s1992 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0801844258</subfield><subfield code="9">0-8018-4425-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0801869773</subfield><subfield code="9">0-8018-6977-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24845497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005847502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA164</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">06A07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trotter, William T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorics and partially ordered sets</subfield><subfield code="b">dimension theory</subfield><subfield code="c">William T. Trotter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Baltimore u.a.</subfield><subfield code="b">Johns Hopkins Univ. Pr.</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 307 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Johns Hopkins Series in the mathematical sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analise combinatoria</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse combinatoire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles partiellement ordonnés</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partially ordered sets</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbgeordnete Menge</subfield><subfield code="0">(DE-588)4128951-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimensionstheorie</subfield><subfield code="0">(DE-588)4149935-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Halbgeordnete Menge</subfield><subfield code="0">(DE-588)4128951-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dimensionstheorie</subfield><subfield code="0">(DE-588)4149935-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Dimensionstheorie</subfield><subfield code="0">(DE-588)4149935-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Halbgeordnete Menge</subfield><subfield code="0">(DE-588)4128951-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003661581&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003661581</subfield></datafield></record></collection>
id DE-604.BV005847502
illustrated Illustrated
indexdate 2024-07-09T16:35:43Z
institution BVB
isbn 0801844258
0801869773
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003661581
oclc_num 24845497
open_access_boolean
owner DE-384
DE-703
DE-12
DE-739
DE-29T
DE-83
DE-11
DE-634
DE-188
owner_facet DE-384
DE-703
DE-12
DE-739
DE-29T
DE-83
DE-11
DE-634
DE-188
physical XIV, 307 S. graph. Darst.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher Johns Hopkins Univ. Pr.
record_format marc
series2 Johns Hopkins Series in the mathematical sciences
spelling Trotter, William T. Verfasser aut
Combinatorics and partially ordered sets dimension theory William T. Trotter
Baltimore u.a. Johns Hopkins Univ. Pr. 1992
XIV, 307 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Johns Hopkins Series in the mathematical sciences
Analise combinatoria larpcal
Analyse combinatoire
Ensembles partiellement ordonnés
Combinatorial analysis
Partially ordered sets
Halbgeordnete Menge (DE-588)4128951-1 gnd rswk-swf
Dimensionstheorie (DE-588)4149935-9 gnd rswk-swf
Kombinatorik (DE-588)4031824-2 gnd rswk-swf
Kombinatorische Analysis (DE-588)4164746-4 gnd rswk-swf
Kombinatorik (DE-588)4031824-2 s
Halbgeordnete Menge (DE-588)4128951-1 s
Dimensionstheorie (DE-588)4149935-9 s
DE-604
Kombinatorische Analysis (DE-588)4164746-4 s
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003661581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Trotter, William T.
Combinatorics and partially ordered sets dimension theory
Analise combinatoria larpcal
Analyse combinatoire
Ensembles partiellement ordonnés
Combinatorial analysis
Partially ordered sets
Halbgeordnete Menge (DE-588)4128951-1 gnd
Dimensionstheorie (DE-588)4149935-9 gnd
Kombinatorik (DE-588)4031824-2 gnd
Kombinatorische Analysis (DE-588)4164746-4 gnd
subject_GND (DE-588)4128951-1
(DE-588)4149935-9
(DE-588)4031824-2
(DE-588)4164746-4
title Combinatorics and partially ordered sets dimension theory
title_auth Combinatorics and partially ordered sets dimension theory
title_exact_search Combinatorics and partially ordered sets dimension theory
title_full Combinatorics and partially ordered sets dimension theory William T. Trotter
title_fullStr Combinatorics and partially ordered sets dimension theory William T. Trotter
title_full_unstemmed Combinatorics and partially ordered sets dimension theory William T. Trotter
title_short Combinatorics and partially ordered sets
title_sort combinatorics and partially ordered sets dimension theory
title_sub dimension theory
topic Analise combinatoria larpcal
Analyse combinatoire
Ensembles partiellement ordonnés
Combinatorial analysis
Partially ordered sets
Halbgeordnete Menge (DE-588)4128951-1 gnd
Dimensionstheorie (DE-588)4149935-9 gnd
Kombinatorik (DE-588)4031824-2 gnd
Kombinatorische Analysis (DE-588)4164746-4 gnd
topic_facet Analise combinatoria
Analyse combinatoire
Ensembles partiellement ordonnés
Combinatorial analysis
Partially ordered sets
Halbgeordnete Menge
Dimensionstheorie
Kombinatorik
Kombinatorische Analysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003661581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT trotterwilliamt combinatoricsandpartiallyorderedsetsdimensiontheory