Lectures on applications-oriented mathematics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Friedman, Bernard (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: San Francisco, Calif. Holden-Day 1969
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV005691207
003 DE-604
005 20210623
007 t|
008 921028s1969 xx |||| 00||| eng d
035 |a (OCoLC)441420092 
035 |a (DE-599)BVBBV005691207 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-739  |a DE-355  |a DE-824  |a DE-29T  |a DE-83  |a DE-188 
080 |a 51 
084 |a QH 110  |0 (DE-625)141531:  |2 rvk 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a 00A05  |2 msc 
100 1 |a Friedman, Bernard  |e Verfasser  |0 (DE-588)125295456  |4 aut 
245 1 0 |a Lectures on applications-oriented mathematics 
264 1 |a San Francisco, Calif.  |b Holden-Day  |c 1969 
300 |a XI,257 S.m.Abb. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Angewandte Mathematik  |0 (DE-588)4142443-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Naturwissenschaftler  |0 (DE-588)4041423-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 1 |a Naturwissenschaftler  |0 (DE-588)4041423-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Angewandte Mathematik  |0 (DE-588)4142443-8  |D s 
689 1 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003554609&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003554609 

Datensatz im Suchindex

DE-BY-UBR_call_number 80/SK 950 F911 L4
DE-BY-UBR_katkey 1018395
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069008227420
_version_ 1822659717425528832
adam_text TABLE OF CONTENTS INTRODUCTION by Victor Twersky CHAPTER 1. DISTRIBUTIONS 1 1.1 DELTA FUNCTIONS AND DISTRIBUTIONS 1 Introduction 1 Symbolic Functions 2 Change of Variables 4 Derivatives of Distributions 6 1.2 APPLICATIONS OF DISTRIBUTIONS 8 Integration of Distributions 8 Limits of Symbolic Functions 11 Symbolic Functions in More than One Dimension 13 Illustration from Electrostatics 15 Equation of Continuity for Electric Charge 16 1.3 DISTRIBUTIONS AND TRANSFORMS 17 An Integral Representation for 6(x) 17 The Fourier Integral 20 Finite Parts of Integrals 23 Operational Methods and Laplace Transform 29 Solution of the Heat Equation 32 Fourier Series 35 CHAPTER 2. SPECTRAL THEORY OF OPERATORS 41 2.1 LINEAR VECTOR SPACES 41 Introduction 41 Examples 42 Function Spaces 43 Event Spaces 44 Inner Product 45 Schwarz Inequality; Projection 48 Applications to Probability 50 2.2 LINEAR OPERATORS 53 Adjoint Operator 54 Quantum Mechanics 56 Uncertainty Principle 57 Spectral Representation 58 Functions of an Operator 62 Continuous Spectrum 63 Partial Differential Equations 65 CHAPTER 3. ASYMPTOTIC METHODS 68 INTRODUCTION 68 3.1 ASYMPTOTIC SERIES 68 Definition of Asymptotic Expansion 70 ix x Table of Contents Operations with Asymptotic Series 73 Integration by Parts 74 Improving an Expansion 76 3.2 WATSON S LEMMA 77 Stirling s Formula 81 Laplace s Method 84 3.3 METHODS OF STEEPEST DESCENT 86 3.4 METHOD OF STATIONARY PHASE 91 Two Dimensions 97 Finite Limits 98 3.5 AIRY INTEGRAL 99 Contour Integration Procedures 101 Pole Near Stationary Point 108 CHAPTER 4. DIFFERENCE EQUATIONS 110 4.1 RECURRENCE RELATIONS AND DIFFERENCE EQUATIONS ... 110 Introduction 110 Finite Difference Operators Ill Connection between Differences and Derivatives 113 Inverse of a Difference Operator 115 Simple Recurrence Relations 115 4.2 DIFFERENCE EQUATIONS OF ORDER HIGHER THAN ONE .... 119 Nonhomogeneous Difference Equations 122 4.3 THE METHOD OF THE GENERATING FUNCTION 124 Linear Difference Equations with Nonconstant Coefficients 126 Method of Integral Transform 127 Linear First Order Equations 128 4.4 SUMMATION BY PARTS 129 Generalization of Summation by Parts 131 Euler Maclaurin Formula 132 4.5 SPECIAL METHODS 133 Poisson Process 136 CHAPTER 5. COMPLEX INTEGRATION 138 INTRODUCTION 138 5.1 ANALYTIC FUNCTIONS 138 Singularities 139 Residues 143 Full Period Integrals of Trigonometric Functions 144 Cauchy Principal Value 148 5.2 INTEGRALS OF RATIONAL FUNCTIONS 149 Integrals of Exponentials Multiplied by Rational Functions 151 Evaluation of Infinite Series 152 5.3 INTEGRALS INVOLVING BRANCH POINTS 155 5.4 CONTOUR INTEGRAL REPRESENTATIONS OF SOLUTIONS TO THE WAVE EQUATION 164 Table of Contents xi CHAPTER 6. SYMBOLIC METHODS 170 INTRODUCTION 170 6.1 DIFFERENTIAL OPERATORS 170 6.2 DIFFERENCE OPERATORS 176 6.3 LAPLACE TRANSFORMS 178 6.4 SYMBOLIC METHODS AND GENERATING FUNCTIONS 188 6.5 NONCOMMUTATIVE OPERATORS 196 CHAPTER 7. PROBABILITY 206 7.1 INTRODUCTION 206 The Algebra of Sets 207 Finite Sample Space 208 7.2 ELEMENTARY PROPERTIES OF PROBABILITY 209 Method of Assigning Probability 210 Expected Values : . 210 Indicator Functions 212 Dependent Events 214 Independent Events 214 Product Spaces 216 7.3 INFINITE SAMPLE SPACES 218 Counting 219 Measure 222 Integration 224 CHAPTER 8. PERTURBATION THEORY 231 8.1 REGULAR PERTURBATION THEORY 231 8.2 THE FREDHOLM EXPANSION 236 Perturbation of Eigenvalues 241 8.3 EXAMPLE OF SINGULAR PERTURBATION PROBLEM 243 Boundary Layer Effect 246 Correction to Eigenvalues 247 8.4 SINGULAR PERTURBATION PROCEDURE 249 BIBLIOGRAPHY 257
any_adam_object 1
author Friedman, Bernard
author_GND (DE-588)125295456
author_facet Friedman, Bernard
author_role aut
author_sort Friedman, Bernard
author_variant b f bf
building Verbundindex
bvnumber BV005691207
classification_rvk QH 110
SK 950
ctrlnum (OCoLC)441420092
(DE-599)BVBBV005691207
discipline Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01526nam a2200397 c 4500</leader><controlfield tag="001">BV005691207</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210623 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921028s1969 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)441420092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005691207</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 110</subfield><subfield code="0">(DE-625)141531:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedman, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)125295456</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on applications-oriented mathematics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Francisco, Calif.</subfield><subfield code="b">Holden-Day</subfield><subfield code="c">1969</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI,257 S.m.Abb.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Naturwissenschaftler</subfield><subfield code="0">(DE-588)4041423-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Naturwissenschaftler</subfield><subfield code="0">(DE-588)4041423-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003554609&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003554609</subfield></datafield></record></collection>
id DE-604.BV005691207
illustrated Not Illustrated
indexdate 2024-12-23T11:42:10Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003554609
oclc_num 441420092
open_access_boolean
owner DE-703
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-83
DE-188
owner_facet DE-703
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-83
DE-188
physical XI,257 S.m.Abb.
publishDate 1969
publishDateSearch 1969
publishDateSort 1969
publisher Holden-Day
record_format marc
spellingShingle Friedman, Bernard
Lectures on applications-oriented mathematics
Angewandte Mathematik (DE-588)4142443-8 gnd
Mathematik (DE-588)4037944-9 gnd
Naturwissenschaftler (DE-588)4041423-1 gnd
subject_GND (DE-588)4142443-8
(DE-588)4037944-9
(DE-588)4041423-1
title Lectures on applications-oriented mathematics
title_auth Lectures on applications-oriented mathematics
title_exact_search Lectures on applications-oriented mathematics
title_full Lectures on applications-oriented mathematics
title_fullStr Lectures on applications-oriented mathematics
title_full_unstemmed Lectures on applications-oriented mathematics
title_short Lectures on applications-oriented mathematics
title_sort lectures on applications oriented mathematics
topic Angewandte Mathematik (DE-588)4142443-8 gnd
Mathematik (DE-588)4037944-9 gnd
Naturwissenschaftler (DE-588)4041423-1 gnd
topic_facet Angewandte Mathematik
Mathematik
Naturwissenschaftler
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003554609&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT friedmanbernard lecturesonapplicationsorientedmathematics