Analysis on real and complex manifolds
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Masson [u.a.]
1973
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Advanced studies in pure mathematics
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005675010 | ||
003 | DE-604 | ||
005 | 20170125 | ||
007 | t| | ||
008 | 921028s1973 xx |||| 00||| eng d | ||
020 | |a 0720425018 |9 0-7204-2501-8 | ||
020 | |a 0444104526 |9 0-444-10452-6 | ||
035 | |a (OCoLC)967264 | ||
035 | |a (DE-599)BVBBV005675010 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 |a DE-19 |a DE-91G |a DE-188 |a DE-355 |a DE-824 |a DE-706 | ||
050 | 0 | |a QA300 | |
082 | 0 | |a 516/.36 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 580f |2 stub | ||
100 | 1 | |a Narasimhan, Raghavan |d 1937- |e Verfasser |0 (DE-588)107634015 |4 aut | |
245 | 1 | 0 | |a Analysis on real and complex manifolds |c Raghavan Narasimhan |
250 | |a 2. ed. | ||
264 | 1 | |a Paris |b Masson [u.a.] |c 1973 | |
300 | |a X, 246 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced studies in pure mathematics |v 1 | |
650 | 7 | |a Analyse mathématique |2 ram | |
650 | 4 | |a Opérateurs différentiels | |
650 | 7 | |a Opérateurs différentiels |2 ram | |
650 | 7 | |a Topologie différentielle |2 ram | |
650 | 4 | |a Variétés complexes | |
650 | 7 | |a Variétés complexes |2 ram | |
650 | 4 | |a Variétés différentiables | |
650 | 7 | |a Variétés différentiables |2 ram | |
650 | 4 | |a Complex manifolds | |
650 | 4 | |a Differentiable manifolds | |
650 | 4 | |a Differential operators | |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 3 | 1 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
689 | 4 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 4 | |8 2\p |5 DE-604 | |
830 | 0 | |a Advanced studies in pure mathematics |v 1 |w (DE-604)BV008909950 |9 1 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-003545971 |
Datensatz im Suchindex
DE-19_call_number | 1601/Zi 453 Nar 13149 0001/8 74-563 1601/SK 350 N218(2) |
---|---|
DE-19_location | 0 95 |
DE-BY-TUM_call_number | 0102 MAT 580f 2005 A 2832 |
DE-BY-TUM_katkey | 1502036 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040020096117 |
DE-BY-UBM_katkey | 2267093 |
DE-BY-UBM_local_call_number | 1601/LB MATH Nar 13150=Lehrbuchsammlung |
DE-BY-UBM_local_notation | LB |
DE-BY-UBM_media_number | 99992326798 41900083030016 99992436010 |
DE-BY-UBR_call_number | 80/SK 350 N218(2) |
DE-BY-UBR_katkey | 5209535 |
DE-BY-UBR_location | 80 |
DE-BY-UBR_media_number | 069007947747 |
_version_ | 1823051934959927297 |
adam_text | Contents
Editorial note V
Preface VII
Chapter 1. Differentiable functions in R 1
§ 1.1 Taylor s formula 2
§1.2 Partitions of unity 11
§ 1.3 Inverse functions, implicit functions and the rank
theorem 13
§1.4 Sard s theorem and functional dependence .... 19
§1.5 Borel s theorem on Taylor series 28
§1.6 Whitney s approximation theorem 31
§ 1.7 An approximation theorem for holomorphic func¬
tions 38
§ 1.8 Ordinary differential equations 43
Chapter 2. Manifolds 52
§ 2.1 Basic definitions 52
§2.2 The tangent and cotangent bundles 60
§ 2.3 Grassmann manifolds 66
§ 2.4 Vector fields and differential forms 69
§ 2.5 Submanifolds 80
§ 2.6 Exterior differentiation 86
§ 2.7 Orientation 94
§ 2.8 Manifolds with boundary 96
§2.9 Integration 100
X CONTENTS
§ 2.10 One parameter groups 106
§2.11 The Frobenius theorem 112
§2.12 Almost complex manifolds 122
§2.13 The lemmata of Poincare and Grothendieck. ... 128
§2.14 Applications: Hartogs continuation theorem and
the Oka-Weil theorem 134
§2.15 Immersions and imbeddings: Whitney s theorems . 141
§2.16 Thorn s transversality theorem 150
Chapter 3. Linear elliptic differential operators . 155
§3.1 Vector bundles 155
§3.2 Fourier transforms 164
§3.3 Linear differential operators 171
§ 3.4 The Sobolev spaces 184
§ 3.5 The lemmata of Rellich and Sobolev 191
§ 3.6 The inequalities of Garding and Friedrichs .... 200
§ 3.7 Elliptic operators with C°° coefficients: the regular¬
ity theorem 211
§ 3.8 Elliptic operators with analytic coefficients .... 218
§ 3.9 The finiteness theorem 226
§3.10 The approximation theorem and its application to
open Riemann surfaces 234
References 242
Subject index 245
Contents
Editorial note V
Preface VII
Chapter 1. Differentiable functions in R 1
§ 1.1 Taylor s formula 2
§1.2 Partitions of unity 11
§ 1.3 Inverse functions, implicit functions and the rank
theorem 13
§1.4 Sard s theorem and functional dependence .... 19
§1.5 Borel s theorem on Taylor series 28
§1.6 Whitney s approximation theorem 31
§ 1.7 An approximation theorem for holomorphic func¬
tions 38
§ 1.8 Ordinary differential equations 43
Chapter 2. Manifolds 52
§ 2.1 Basic definitions 52
§2.2 The tangent and cotangent bundles 60
§ 2.3 Grassmann manifolds 66
§ 2.4 Vector fields and differential forms 69
§ 2.5 Submanifolds 80
§ 2.6 Exterior differentiation 86
§ 2.7 Orientation 94
§ 2.8 Manifolds with boundary 96
§2.9 Integration 100
X CONTENTS
§ 2.10 One parameter groups 106
§2.11 The Frobenius theorem 112
§2.12 Almost complex manifolds 122
§2.13 The lemmata of Poincare and Grothendieck. ... 128
§2.14 Applications: Hartogs continuation theorem and
the Oka Weil theorem 134
§2.15 Immersions and imbeddings: Whitney s theorems . 141
§2.16 Thorn s transversality theorem 150
Chapter 3. Linear elliptic differential operators . 155
§3.1 Vector bundles 155
§3.2 Fourier transforms 164
§3.3 Linear differential operators 171
§ 3.4 The Sobolev spaces 184
§ 3.5 The lemmata of Rellich and Sobolev 191
§ 3.6 The inequalities of Garding and Friedrichs .... 200
§ 3.7 Elliptic operators with C°° coefficients: the regular¬
ity theorem 211
§ 3.8 Elliptic operators with analytic coefficients .... 218
§ 3.9 The finiteness theorem 226
§3.10 The approximation theorem and its application to
open Riemann surfaces 234
References 242
Subject index 245
|
any_adam_object | 1 |
author | Narasimhan, Raghavan 1937- |
author_GND | (DE-588)107634015 |
author_facet | Narasimhan, Raghavan 1937- |
author_role | aut |
author_sort | Narasimhan, Raghavan 1937- |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV005675010 |
callnumber-first | Q - Science |
callnumber-label | QA300 |
callnumber-raw | QA300 |
callnumber-search | QA300 |
callnumber-sort | QA 3300 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
classification_tum | MAT 580f |
ctrlnum | (OCoLC)967264 (DE-599)BVBBV005675010 |
dewey-full | 516/.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.36 |
dewey-search | 516/.36 |
dewey-sort | 3516 236 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03190nam a2200745 cb4500</leader><controlfield tag="001">BV005675010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170125 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921028s1973 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0720425018</subfield><subfield code="9">0-7204-2501-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444104526</subfield><subfield code="9">0-444-10452-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005675010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 580f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on real and complex manifolds</subfield><subfield code="c">Raghavan Narasimhan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Masson [u.a.]</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 246 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced studies in pure mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs différentiels</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs différentiels</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie différentielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés complexes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés différentiables</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés différentiables</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced studies in pure mathematics</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV008909950</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003545971</subfield></datafield></record></collection> |
id | DE-604.BV005675010 |
illustrated | Not Illustrated |
indexdate | 2025-02-03T16:44:36Z |
institution | BVB |
isbn | 0720425018 0444104526 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003545971 |
oclc_num | 967264 |
open_access_boolean | |
owner | DE-703 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-355 DE-BY-UBR DE-824 DE-706 |
owner_facet | DE-703 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-355 DE-BY-UBR DE-824 DE-706 |
physical | X, 246 S. |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Masson [u.a.] |
record_format | marc |
series | Advanced studies in pure mathematics |
series2 | Advanced studies in pure mathematics |
spellingShingle | Narasimhan, Raghavan 1937- Analysis on real and complex manifolds Advanced studies in pure mathematics Analyse mathématique ram Opérateurs différentiels Opérateurs différentiels ram Topologie différentielle ram Variétés complexes Variétés complexes ram Variétés différentiables Variétés différentiables ram Complex manifolds Differentiable manifolds Differential operators Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Analysis (DE-588)4001865-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Differentialoperator (DE-588)4012251-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4012269-4 (DE-588)4001865-9 (DE-588)4037379-4 (DE-588)4031996-9 (DE-588)4012251-7 (DE-588)4018916-8 |
title | Analysis on real and complex manifolds |
title_auth | Analysis on real and complex manifolds |
title_exact_search | Analysis on real and complex manifolds |
title_full | Analysis on real and complex manifolds Raghavan Narasimhan |
title_fullStr | Analysis on real and complex manifolds Raghavan Narasimhan |
title_full_unstemmed | Analysis on real and complex manifolds Raghavan Narasimhan |
title_short | Analysis on real and complex manifolds |
title_sort | analysis on real and complex manifolds |
topic | Analyse mathématique ram Opérateurs différentiels Opérateurs différentiels ram Topologie différentielle ram Variétés complexes Variétés complexes ram Variétés différentiables Variétés différentiables ram Complex manifolds Differentiable manifolds Differential operators Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Analysis (DE-588)4001865-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Differentialoperator (DE-588)4012251-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Analyse mathématique Opérateurs différentiels Topologie différentielle Variétés complexes Variétés différentiables Complex manifolds Differentiable manifolds Differential operators Differenzierbare Mannigfaltigkeit Analysis Mannigfaltigkeit Komplexe Mannigfaltigkeit Differentialoperator Funktionalanalysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008909950 |
work_keys_str_mv | AT narasimhanraghavan analysisonrealandcomplexmanifolds |