Analysis on real and complex manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Narasimhan, Raghavan 1937- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Paris Masson [u.a.] 1973
Ausgabe:2. ed.
Schriftenreihe:Advanced studies in pure mathematics 1
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV005675010
003 DE-604
005 20170125
007 t|
008 921028s1973 xx |||| 00||| eng d
020 |a 0720425018  |9 0-7204-2501-8 
020 |a 0444104526  |9 0-444-10452-6 
035 |a (OCoLC)967264 
035 |a (DE-599)BVBBV005675010 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-20  |a DE-19  |a DE-91G  |a DE-188  |a DE-355  |a DE-824  |a DE-706 
050 0 |a QA300 
082 0 |a 516/.36 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a MAT 580f  |2 stub 
100 1 |a Narasimhan, Raghavan  |d 1937-  |e Verfasser  |0 (DE-588)107634015  |4 aut 
245 1 0 |a Analysis on real and complex manifolds  |c Raghavan Narasimhan 
250 |a 2. ed. 
264 1 |a Paris  |b Masson [u.a.]  |c 1973 
300 |a X, 246 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced studies in pure mathematics  |v 1 
650 7 |a Analyse mathématique  |2 ram 
650 4 |a Opérateurs différentiels 
650 7 |a Opérateurs différentiels  |2 ram 
650 7 |a Topologie différentielle  |2 ram 
650 4 |a Variétés complexes 
650 7 |a Variétés complexes  |2 ram 
650 4 |a Variétés différentiables 
650 7 |a Variétés différentiables  |2 ram 
650 4 |a Complex manifolds 
650 4 |a Differentiable manifolds 
650 4 |a Differential operators 
650 0 7 |a Differenzierbare Mannigfaltigkeit  |0 (DE-588)4012269-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Analysis  |0 (DE-588)4001865-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialoperator  |0 (DE-588)4012251-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Analysis  |0 (DE-588)4001865-9  |D s 
689 0 1 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Differentialoperator  |0 (DE-588)4012251-7  |D s 
689 1 |5 DE-604 
689 2 0 |a Differenzierbare Mannigfaltigkeit  |0 (DE-588)4012269-4  |D s 
689 2 |5 DE-604 
689 3 0 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 3 1 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 3 |8 1\p  |5 DE-604 
689 4 0 |a Komplexe Mannigfaltigkeit  |0 (DE-588)4031996-9  |D s 
689 4 |8 2\p  |5 DE-604 
830 0 |a Advanced studies in pure mathematics  |v 1  |w (DE-604)BV008909950  |9 1 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003545971 

Datensatz im Suchindex

DE-19_call_number 1601/Zi 453 Nar 13149
0001/8 74-563
1601/SK 350 N218(2)
DE-19_location 0
95
DE-BY-TUM_call_number 0102 MAT 580f 2005 A 2832
DE-BY-TUM_katkey 1502036
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020096117
DE-BY-UBM_katkey 2267093
DE-BY-UBM_local_call_number 1601/LB MATH Nar 13150=Lehrbuchsammlung
DE-BY-UBM_local_notation LB
DE-BY-UBM_media_number 99992326798
41900083030016
99992436010
DE-BY-UBR_call_number 80/SK 350 N218(2)
DE-BY-UBR_katkey 5209535
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069007947747
_version_ 1823051934959927297
adam_text Contents Editorial note V Preface VII Chapter 1. Differentiable functions in R 1 § 1.1 Taylor s formula 2 §1.2 Partitions of unity 11 § 1.3 Inverse functions, implicit functions and the rank theorem 13 §1.4 Sard s theorem and functional dependence .... 19 §1.5 Borel s theorem on Taylor series 28 §1.6 Whitney s approximation theorem 31 § 1.7 An approximation theorem for holomorphic func¬ tions 38 § 1.8 Ordinary differential equations 43 Chapter 2. Manifolds 52 § 2.1 Basic definitions 52 §2.2 The tangent and cotangent bundles 60 § 2.3 Grassmann manifolds 66 § 2.4 Vector fields and differential forms 69 § 2.5 Submanifolds 80 § 2.6 Exterior differentiation 86 § 2.7 Orientation 94 § 2.8 Manifolds with boundary 96 §2.9 Integration 100 X CONTENTS § 2.10 One parameter groups 106 §2.11 The Frobenius theorem 112 §2.12 Almost complex manifolds 122 §2.13 The lemmata of Poincare and Grothendieck. ... 128 §2.14 Applications: Hartogs continuation theorem and the Oka-Weil theorem 134 §2.15 Immersions and imbeddings: Whitney s theorems . 141 §2.16 Thorn s transversality theorem 150 Chapter 3. Linear elliptic differential operators . 155 §3.1 Vector bundles 155 §3.2 Fourier transforms 164 §3.3 Linear differential operators 171 § 3.4 The Sobolev spaces 184 § 3.5 The lemmata of Rellich and Sobolev 191 § 3.6 The inequalities of Garding and Friedrichs .... 200 § 3.7 Elliptic operators with C°° coefficients: the regular¬ ity theorem 211 § 3.8 Elliptic operators with analytic coefficients .... 218 § 3.9 The finiteness theorem 226 §3.10 The approximation theorem and its application to open Riemann surfaces 234 References 242 Subject index 245 Contents Editorial note V Preface VII Chapter 1. Differentiable functions in R 1 § 1.1 Taylor s formula 2 §1.2 Partitions of unity 11 § 1.3 Inverse functions, implicit functions and the rank theorem 13 §1.4 Sard s theorem and functional dependence .... 19 §1.5 Borel s theorem on Taylor series 28 §1.6 Whitney s approximation theorem 31 § 1.7 An approximation theorem for holomorphic func¬ tions 38 § 1.8 Ordinary differential equations 43 Chapter 2. Manifolds 52 § 2.1 Basic definitions 52 §2.2 The tangent and cotangent bundles 60 § 2.3 Grassmann manifolds 66 § 2.4 Vector fields and differential forms 69 § 2.5 Submanifolds 80 § 2.6 Exterior differentiation 86 § 2.7 Orientation 94 § 2.8 Manifolds with boundary 96 §2.9 Integration 100 X CONTENTS § 2.10 One parameter groups 106 §2.11 The Frobenius theorem 112 §2.12 Almost complex manifolds 122 §2.13 The lemmata of Poincare and Grothendieck. ... 128 §2.14 Applications: Hartogs continuation theorem and the Oka Weil theorem 134 §2.15 Immersions and imbeddings: Whitney s theorems . 141 §2.16 Thorn s transversality theorem 150 Chapter 3. Linear elliptic differential operators . 155 §3.1 Vector bundles 155 §3.2 Fourier transforms 164 §3.3 Linear differential operators 171 § 3.4 The Sobolev spaces 184 § 3.5 The lemmata of Rellich and Sobolev 191 § 3.6 The inequalities of Garding and Friedrichs .... 200 § 3.7 Elliptic operators with C°° coefficients: the regular¬ ity theorem 211 § 3.8 Elliptic operators with analytic coefficients .... 218 § 3.9 The finiteness theorem 226 §3.10 The approximation theorem and its application to open Riemann surfaces 234 References 242 Subject index 245
any_adam_object 1
author Narasimhan, Raghavan 1937-
author_GND (DE-588)107634015
author_facet Narasimhan, Raghavan 1937-
author_role aut
author_sort Narasimhan, Raghavan 1937-
author_variant r n rn
building Verbundindex
bvnumber BV005675010
callnumber-first Q - Science
callnumber-label QA300
callnumber-raw QA300
callnumber-search QA300
callnumber-sort QA 3300
callnumber-subject QA - Mathematics
classification_rvk SK 350
classification_tum MAT 580f
ctrlnum (OCoLC)967264
(DE-599)BVBBV005675010
dewey-full 516/.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516/.36
dewey-search 516/.36
dewey-sort 3516 236
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03190nam a2200745 cb4500</leader><controlfield tag="001">BV005675010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170125 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921028s1973 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0720425018</subfield><subfield code="9">0-7204-2501-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444104526</subfield><subfield code="9">0-444-10452-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005675010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 580f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on real and complex manifolds</subfield><subfield code="c">Raghavan Narasimhan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Masson [u.a.]</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 246 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced studies in pure mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs différentiels</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs différentiels</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie différentielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés complexes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés différentiables</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés différentiables</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced studies in pure mathematics</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV008909950</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003545971&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003545971&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003545971</subfield></datafield></record></collection>
id DE-604.BV005675010
illustrated Not Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 0720425018
0444104526
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003545971
oclc_num 967264
open_access_boolean
owner DE-703
DE-20
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-188
DE-355
DE-BY-UBR
DE-824
DE-706
owner_facet DE-703
DE-20
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-188
DE-355
DE-BY-UBR
DE-824
DE-706
physical X, 246 S.
publishDate 1973
publishDateSearch 1973
publishDateSort 1973
publisher Masson [u.a.]
record_format marc
series Advanced studies in pure mathematics
series2 Advanced studies in pure mathematics
spellingShingle Narasimhan, Raghavan 1937-
Analysis on real and complex manifolds
Advanced studies in pure mathematics
Analyse mathématique ram
Opérateurs différentiels
Opérateurs différentiels ram
Topologie différentielle ram
Variétés complexes
Variétés complexes ram
Variétés différentiables
Variétés différentiables ram
Complex manifolds
Differentiable manifolds
Differential operators
Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd
Analysis (DE-588)4001865-9 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Differentialoperator (DE-588)4012251-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
subject_GND (DE-588)4012269-4
(DE-588)4001865-9
(DE-588)4037379-4
(DE-588)4031996-9
(DE-588)4012251-7
(DE-588)4018916-8
title Analysis on real and complex manifolds
title_auth Analysis on real and complex manifolds
title_exact_search Analysis on real and complex manifolds
title_full Analysis on real and complex manifolds Raghavan Narasimhan
title_fullStr Analysis on real and complex manifolds Raghavan Narasimhan
title_full_unstemmed Analysis on real and complex manifolds Raghavan Narasimhan
title_short Analysis on real and complex manifolds
title_sort analysis on real and complex manifolds
topic Analyse mathématique ram
Opérateurs différentiels
Opérateurs différentiels ram
Topologie différentielle ram
Variétés complexes
Variétés complexes ram
Variétés différentiables
Variétés différentiables ram
Complex manifolds
Differentiable manifolds
Differential operators
Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd
Analysis (DE-588)4001865-9 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd
Differentialoperator (DE-588)4012251-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
topic_facet Analyse mathématique
Opérateurs différentiels
Topologie différentielle
Variétés complexes
Variétés différentiables
Complex manifolds
Differentiable manifolds
Differential operators
Differenzierbare Mannigfaltigkeit
Analysis
Mannigfaltigkeit
Komplexe Mannigfaltigkeit
Differentialoperator
Funktionalanalysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003545971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV008909950
work_keys_str_mv AT narasimhanraghavan analysisonrealandcomplexmanifolds