Groups, generators, syzygies, and orbits in invariant theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Popov, Vladimir L. (VerfasserIn)
Format: Buch
Sprache:English
Russian
Veröffentlicht: Providence, R.I. American Mathematical Society 1992
Schriftenreihe:Translations of mathematical monographs 100
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV005594008
003 DE-604
005 20150506
007 t|
008 921014s1992 xx d||| |||| 00||| eng d
020 |a 0821845578  |9 0-8218-4557-8 
020 |a 9780821853351  |c pbk.  |9 978-0-8218-5335-1 
035 |a (OCoLC)25628966 
035 |a (DE-599)BVBBV005594008 
040 |a DE-604  |b ger  |e rakddb 
041 1 |a eng  |h rus 
049 |a DE-384  |a DE-12  |a DE-355  |a DE-703  |a DE-19  |a DE-634  |a DE-188  |a DE-91G 
050 0 |a QA201 
082 0 |a 512/.944  |2 20 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a MAT 200f  |2 stub 
084 |a MAT 202f  |2 stub 
100 1 |a Popov, Vladimir L.  |e Verfasser  |4 aut 
240 1 0 |a Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov 
245 1 0 |a Groups, generators, syzygies, and orbits in invariant theory  |c V. L. Popov 
264 1 |a Providence, R.I.  |b American Mathematical Society  |c 1992 
300 |a VI, 245 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Translations of mathematical monographs  |v 100 
500 |a Aus d. Russ. übers. - Hier auch später erschienene, unveränderte Nachdrucke. 
650 4 |a Invariants 
650 7 |a Invariants  |2 ram 
650 4 |a Invariants 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Mannigfaltigkeit  |0 (DE-588)4128509-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Invariante  |0 (DE-588)4128781-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Invariantentheorie  |0 (DE-588)4162209-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Reduktive Gruppe  |0 (DE-588)4177313-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Reduktive Gruppe  |0 (DE-588)4177313-5  |D s 
689 0 1 |a Algebraische Mannigfaltigkeit  |0 (DE-588)4128509-8  |D s 
689 0 2 |a Invariantentheorie  |0 (DE-588)4162209-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 1 1 |a Invariante  |0 (DE-588)4128781-2  |D s 
689 1 |5 DE-604 
830 0 |a Translations of mathematical monographs  |v 100  |w (DE-604)BV000002394  |9 100 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003503967&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |n oe 
943 1 |a oai:aleph.bib-bvb.de:BVB01-003503967 

Datensatz im Suchindex

_version_ 1819576762020921344
adam_text Contents Introduction 1 Notation and Terminology 19 CHAPTER 1. The Role of Reductive Groups in Invariant Theory 23 §1. Reductive groups and the generalized Hilbert s 14th problem 23 §2. Quasihomogeneous varieties of reductive groups and the original Hilbert s 14th problem 25 CHAPTER 2. Constructive Invariant Theory 29 §1. Formulation and reduction of the problem 29 §2. A bound on the degree of a system of parameters and the main theorem 33 §3. The radical of the ideal / and the approach suggested by Dieudonne and Carrell 40 CHAPTER 3. The Degree of the Poincare Series of the Algebra of Invariants and a Finiteness Theorem for Representations wit Free Algebra of Invariants 43 § 1. The degree of the Poincare series and a functional equation 43 §2. The zonohedron of weights 51 §3. Finiteness theorems 56 CHAPTER 4. Syzygies in Invariant Theory 61 §0. A description of the results and additional notation 61 § 1. Monotonicity theorems 64 §2. Bounds on hdk[V]G for certain types of groups 68 §3. Estimating hdk[V]G with the aid of one dimensional tori of G 76 §4. Majorizing theorems for multiplicities, generic stabilizers, and stability 82 §5. Torus T for the classical simple groups of rank 2 87 §6. Torus T for the exceptional simple groups 94 §7. Proof of the main theorem: the first case 100 §8. Proof of the main theorem: the second case 104 V vi CONTENTS §9. Proof of the main theorem: the third case 113 §10. Examples 119 CHAPTER 5. Representations with Free Modules of Co variants 127 §1. Connections with equidimensionality: finiteness theorems 127 §2. Classification and equivalent characterizations: Igusa s condition 135 CHAPTER 6. A Classification of Normal Affine Quasihomogeneous Varieties of SL2 147 §1. Some general results and the beginning of classification 147 §2. The conclusion of classification 154 §3. Application: the structure of orbit closures in finite dimensional rational SL2 modules 164 CHAPTER 7. Quasihomogeneous Curves, Surfaces, and Solids 167 §1. A classification of irreducible quasihomogeneous curves 167 §2. A classification of irreducible affine surfaces with algebraic groups of automorphisms acting transitively on the complement of a finite number of points 176 §3. A classification of irreducible affine solids with algebraic groups of automorphisms acting transitively on the complement of a finite number of points 181 Appendix 201 §1. Appendix to Chapter 1 201 §2. Appendix to Chapter 2 203 §3. Appendix to Chapter 3 204 §4. Appendix to Chapter 4 213 §5. Appendix to Chapter 5 216 §6. Appendix to Chapter 6 225 Bibliography 231 Subject Index 243
any_adam_object 1
author Popov, Vladimir L.
author_facet Popov, Vladimir L.
author_role aut
author_sort Popov, Vladimir L.
author_variant v l p vl vlp
building Verbundindex
bvnumber BV005594008
callnumber-first Q - Science
callnumber-label QA201
callnumber-raw QA201
callnumber-search QA201
callnumber-sort QA 3201
callnumber-subject QA - Mathematics
classification_rvk SK 240
SK 260
classification_tum MAT 200f
MAT 202f
ctrlnum (OCoLC)25628966
(DE-599)BVBBV005594008
dewey-full 512/.944
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.944
dewey-search 512/.944
dewey-sort 3512 3944
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02430nam a2200589 cb4500</leader><controlfield tag="001">BV005594008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150506 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921014s1992 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821845578</subfield><subfield code="9">0-8218-4557-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821853351</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-8218-5335-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25628966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005594008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA201</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.944</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popov, Vladimir L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups, generators, syzygies, and orbits in invariant theory</subfield><subfield code="c">V. L. Popov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 245 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">100</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus d. Russ. übers. - Hier auch später erschienene, unveränderte Nachdrucke.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">100</subfield><subfield code="w">(DE-604)BV000002394</subfield><subfield code="9">100</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=003503967&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003503967</subfield></datafield></record></collection>
id DE-604.BV005594008
illustrated Illustrated
indexdate 2024-12-23T11:40:31Z
institution BVB
isbn 0821845578
9780821853351
language English
Russian
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-003503967
oclc_num 25628966
open_access_boolean
owner DE-384
DE-12
DE-355
DE-BY-UBR
DE-703
DE-19
DE-BY-UBM
DE-634
DE-188
DE-91G
DE-BY-TUM
owner_facet DE-384
DE-12
DE-355
DE-BY-UBR
DE-703
DE-19
DE-BY-UBM
DE-634
DE-188
DE-91G
DE-BY-TUM
physical VI, 245 S. graph. Darst.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher American Mathematical Society
record_format marc
series Translations of mathematical monographs
series2 Translations of mathematical monographs
spellingShingle Popov, Vladimir L.
Groups, generators, syzygies, and orbits in invariant theory
Translations of mathematical monographs
Invariants
Invariants ram
Algebraische Geometrie (DE-588)4001161-6 gnd
Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd
Invariante (DE-588)4128781-2 gnd
Invariantentheorie (DE-588)4162209-1 gnd
Reduktive Gruppe (DE-588)4177313-5 gnd
subject_GND (DE-588)4001161-6
(DE-588)4128509-8
(DE-588)4128781-2
(DE-588)4162209-1
(DE-588)4177313-5
title Groups, generators, syzygies, and orbits in invariant theory
title_alt Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov
title_auth Groups, generators, syzygies, and orbits in invariant theory
title_exact_search Groups, generators, syzygies, and orbits in invariant theory
title_full Groups, generators, syzygies, and orbits in invariant theory V. L. Popov
title_fullStr Groups, generators, syzygies, and orbits in invariant theory V. L. Popov
title_full_unstemmed Groups, generators, syzygies, and orbits in invariant theory V. L. Popov
title_short Groups, generators, syzygies, and orbits in invariant theory
title_sort groups generators syzygies and orbits in invariant theory
topic Invariants
Invariants ram
Algebraische Geometrie (DE-588)4001161-6 gnd
Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd
Invariante (DE-588)4128781-2 gnd
Invariantentheorie (DE-588)4162209-1 gnd
Reduktive Gruppe (DE-588)4177313-5 gnd
topic_facet Invariants
Algebraische Geometrie
Algebraische Mannigfaltigkeit
Invariante
Invariantentheorie
Reduktive Gruppe
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003503967&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000002394
work_keys_str_mv AT popovvladimirl gruppyobrazujusciesizigiiiorbityvteoriiinvariantov
AT popovvladimirl groupsgeneratorssyzygiesandorbitsininvarianttheory