Groups, generators, syzygies, and orbits in invariant theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English Russian |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
1992
|
Schriftenreihe: | Translations of mathematical monographs
100 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005594008 | ||
003 | DE-604 | ||
005 | 20150506 | ||
007 | t| | ||
008 | 921014s1992 xx d||| |||| 00||| eng d | ||
020 | |a 0821845578 |9 0-8218-4557-8 | ||
020 | |a 9780821853351 |c pbk. |9 978-0-8218-5335-1 | ||
035 | |a (OCoLC)25628966 | ||
035 | |a (DE-599)BVBBV005594008 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h rus | |
049 | |a DE-384 |a DE-12 |a DE-355 |a DE-703 |a DE-19 |a DE-634 |a DE-188 |a DE-91G | ||
050 | 0 | |a QA201 | |
082 | 0 | |a 512/.944 |2 20 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 200f |2 stub | ||
084 | |a MAT 202f |2 stub | ||
100 | 1 | |a Popov, Vladimir L. |e Verfasser |4 aut | |
240 | 1 | 0 | |a Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov |
245 | 1 | 0 | |a Groups, generators, syzygies, and orbits in invariant theory |c V. L. Popov |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 1992 | |
300 | |a VI, 245 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Translations of mathematical monographs |v 100 | |
500 | |a Aus d. Russ. übers. - Hier auch später erschienene, unveränderte Nachdrucke. | ||
650 | 4 | |a Invariants | |
650 | 7 | |a Invariants |2 ram | |
650 | 4 | |a Invariants | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariantentheorie |0 (DE-588)4162209-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | 1 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |D s |
689 | 0 | 2 | |a Invariantentheorie |0 (DE-588)4162209-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | 1 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Translations of mathematical monographs |v 100 |w (DE-604)BV000002394 |9 100 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003503967&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-003503967 |
Datensatz im Suchindex
_version_ | 1819576762020921344 |
---|---|
adam_text | Contents
Introduction 1
Notation and Terminology 19
CHAPTER 1. The Role of Reductive Groups in Invariant Theory 23
§1. Reductive groups and the generalized Hilbert s 14th problem 23
§2. Quasihomogeneous varieties of reductive groups and the
original Hilbert s 14th problem 25
CHAPTER 2. Constructive Invariant Theory 29
§1. Formulation and reduction of the problem 29
§2. A bound on the degree of a system of parameters and the
main theorem 33
§3. The radical of the ideal / and the approach suggested by
Dieudonne and Carrell 40
CHAPTER 3. The Degree of the Poincare Series of the Algebra of
Invariants and a Finiteness Theorem for
Representations wit Free Algebra of Invariants 43
§ 1. The degree of the Poincare series and a functional equation 43
§2. The zonohedron of weights 51
§3. Finiteness theorems 56
CHAPTER 4. Syzygies in Invariant Theory 61
§0. A description of the results and additional notation 61
§ 1. Monotonicity theorems 64
§2. Bounds on hdk[V]G for certain types of groups 68
§3. Estimating hdk[V]G with the aid of one dimensional tori of
G 76
§4. Majorizing theorems for multiplicities, generic stabilizers,
and stability 82
§5. Torus T for the classical simple groups of rank 2 87
§6. Torus T for the exceptional simple groups 94
§7. Proof of the main theorem: the first case 100
§8. Proof of the main theorem: the second case 104
V
vi CONTENTS
§9. Proof of the main theorem: the third case 113
§10. Examples 119
CHAPTER 5. Representations with Free Modules of Co variants 127
§1. Connections with equidimensionality: finiteness theorems 127
§2. Classification and equivalent characterizations: Igusa s
condition 135
CHAPTER 6. A Classification of Normal Affine Quasihomogeneous
Varieties of SL2 147
§1. Some general results and the beginning of classification 147
§2. The conclusion of classification 154
§3. Application: the structure of orbit closures in
finite dimensional rational SL2 modules 164
CHAPTER 7. Quasihomogeneous Curves, Surfaces, and Solids 167
§1. A classification of irreducible quasihomogeneous curves 167
§2. A classification of irreducible affine surfaces with algebraic
groups of automorphisms acting transitively on the
complement of a finite number of points 176
§3. A classification of irreducible affine solids with algebraic
groups of automorphisms acting transitively on the
complement of a finite number of points 181
Appendix 201
§1. Appendix to Chapter 1 201
§2. Appendix to Chapter 2 203
§3. Appendix to Chapter 3 204
§4. Appendix to Chapter 4 213
§5. Appendix to Chapter 5 216
§6. Appendix to Chapter 6 225
Bibliography 231
Subject Index 243
|
any_adam_object | 1 |
author | Popov, Vladimir L. |
author_facet | Popov, Vladimir L. |
author_role | aut |
author_sort | Popov, Vladimir L. |
author_variant | v l p vl vlp |
building | Verbundindex |
bvnumber | BV005594008 |
callnumber-first | Q - Science |
callnumber-label | QA201 |
callnumber-raw | QA201 |
callnumber-search | QA201 |
callnumber-sort | QA 3201 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 260 |
classification_tum | MAT 200f MAT 202f |
ctrlnum | (OCoLC)25628966 (DE-599)BVBBV005594008 |
dewey-full | 512/.944 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.944 |
dewey-search | 512/.944 |
dewey-sort | 3512 3944 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02430nam a2200589 cb4500</leader><controlfield tag="001">BV005594008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150506 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921014s1992 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821845578</subfield><subfield code="9">0-8218-4557-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821853351</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-8218-5335-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25628966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005594008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA201</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.944</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popov, Vladimir L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups, generators, syzygies, and orbits in invariant theory</subfield><subfield code="c">V. L. Popov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 245 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">100</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus d. Russ. übers. - Hier auch später erschienene, unveränderte Nachdrucke.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">100</subfield><subfield code="w">(DE-604)BV000002394</subfield><subfield code="9">100</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003503967&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003503967</subfield></datafield></record></collection> |
id | DE-604.BV005594008 |
illustrated | Illustrated |
indexdate | 2024-12-23T11:40:31Z |
institution | BVB |
isbn | 0821845578 9780821853351 |
language | English Russian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003503967 |
oclc_num | 25628966 |
open_access_boolean | |
owner | DE-384 DE-12 DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-634 DE-188 DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-634 DE-188 DE-91G DE-BY-TUM |
physical | VI, 245 S. graph. Darst. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | American Mathematical Society |
record_format | marc |
series | Translations of mathematical monographs |
series2 | Translations of mathematical monographs |
spellingShingle | Popov, Vladimir L. Groups, generators, syzygies, and orbits in invariant theory Translations of mathematical monographs Invariants Invariants ram Algebraische Geometrie (DE-588)4001161-6 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd Invariante (DE-588)4128781-2 gnd Invariantentheorie (DE-588)4162209-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4128509-8 (DE-588)4128781-2 (DE-588)4162209-1 (DE-588)4177313-5 |
title | Groups, generators, syzygies, and orbits in invariant theory |
title_alt | Gruppy, obrazujuščie, sizigii i orbity v teorii invariantov |
title_auth | Groups, generators, syzygies, and orbits in invariant theory |
title_exact_search | Groups, generators, syzygies, and orbits in invariant theory |
title_full | Groups, generators, syzygies, and orbits in invariant theory V. L. Popov |
title_fullStr | Groups, generators, syzygies, and orbits in invariant theory V. L. Popov |
title_full_unstemmed | Groups, generators, syzygies, and orbits in invariant theory V. L. Popov |
title_short | Groups, generators, syzygies, and orbits in invariant theory |
title_sort | groups generators syzygies and orbits in invariant theory |
topic | Invariants Invariants ram Algebraische Geometrie (DE-588)4001161-6 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd Invariante (DE-588)4128781-2 gnd Invariantentheorie (DE-588)4162209-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
topic_facet | Invariants Algebraische Geometrie Algebraische Mannigfaltigkeit Invariante Invariantentheorie Reduktive Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003503967&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000002394 |
work_keys_str_mv | AT popovvladimirl gruppyobrazujusciesizigiiiorbityvteoriiinvariantov AT popovvladimirl groupsgeneratorssyzygiesandorbitsininvarianttheory |