Chaotic transport in dynamical systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wiggins, Stephen ca. 20./21. Jh (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York u.a. Springer 1992
Schriftenreihe:Interdisciplinary applied mathematics 2
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV004837707
003 DE-604
005 20220422
007 t|
008 920525s1992 xx d||| |||| 00||| engod
020 |a 0387975225  |9 0-387-97522-5 
020 |a 3540975225  |9 3-540-97522-5 
035 |a (OCoLC)24792948 
035 |a (DE-599)BVBBV004837707 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-384  |a DE-739  |a DE-91G  |a DE-355  |a DE-703  |a DE-29T  |a DE-19  |a DE-634  |a DE-83  |a DE-188 
050 0 |a QA614.8 
082 0 |a 515/.352  |2 20 
084 |a SK 520  |0 (DE-625)143244:  |2 rvk 
084 |a SK 810  |0 (DE-625)143257:  |2 rvk 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a MAT 344f  |2 stub 
084 |a PHY 063f  |2 stub 
084 |a 58Fxx  |2 msc 
084 |a 76Rxx  |2 msc 
084 |a 34C35  |2 msc 
100 1 |a Wiggins, Stephen  |d ca. 20./21. Jh.  |e Verfasser  |0 (DE-588)1247764664  |4 aut 
245 1 0 |a Chaotic transport in dynamical systems  |c Stephen Wiggins 
264 1 |a New York u.a.  |b Springer  |c 1992 
300 |a XIII, 301 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Interdisciplinary applied mathematics  |v 2 
650 7 |a Comportement chaotique des systèmes  |2 ram 
650 7 |a Systèmes dynamiques différentiables  |2 ram 
650 7 |a Transport, théorie du  |2 ram 
650 4 |a Chaotic behavior in systems 
650 4 |a Differentiable dynamical systems 
650 4 |a Transport theory 
650 0 7 |a Transporttheorie  |0 (DE-588)4185936-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Transportprozess  |0 (DE-588)4185932-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineares dynamisches System  |0 (DE-588)4126142-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Chaos  |0 (DE-588)4191419-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzierbares dynamisches System  |0 (DE-588)4137931-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Chaotisches System  |0 (DE-588)4316104-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Transportprozess  |0 (DE-588)4185932-7  |D s 
689 0 1 |a Chaos  |0 (DE-588)4191419-3  |D s 
689 0 2 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 |5 DE-604 
689 1 0 |a Nichtlineares dynamisches System  |0 (DE-588)4126142-2  |D s 
689 1 1 |a Chaotisches System  |0 (DE-588)4316104-2  |D s 
689 1 2 |a Transporttheorie  |0 (DE-588)4185936-4  |D s 
689 1 |5 DE-604 
689 2 0 |a Transporttheorie  |0 (DE-588)4185936-4  |D s 
689 2 1 |a Chaos  |0 (DE-588)4191419-3  |D s 
689 2 |5 DE-604 
689 3 0 |a Differenzierbares dynamisches System  |0 (DE-588)4137931-7  |D s 
689 3 1 |a Chaos  |0 (DE-588)4191419-3  |D s 
689 3 |5 DE-604 
689 4 0 |a Chaos  |0 (DE-588)4191419-3  |D s 
689 4 1 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 4 2 |a Transporttheorie  |0 (DE-588)4185936-4  |D s 
689 4 |5 DE-604 
830 0 |a Interdisciplinary applied mathematics  |v 2  |w (DE-604)BV004216726  |9 2 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002978660&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-002978660 

Datensatz im Suchindex

DE-19_call_number 1601/SK 810 W655
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 344f 2001 A 35739
DE-BY-TUM_katkey 550309
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020529177
DE-BY-UBM_katkey 2096226
DE-BY-UBM_media_number 41602838220016
DE-BY-UBR_call_number 80/SK 810 W655
DE-BY-UBR_katkey 882071
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069008051611
_version_ 1823051737889505280
adam_text Contents Preface vii 1 Introduction and Examples 1 Example 1.1 Uniform Elliptical Vortices in External, Linear Time Dependent Velocity Fields. . 2 Example 1.2 Capture and Passage Through Resonance in Celestial Mechanics 9 Example 1.3 Bubble Dynamics in Straining Flows ... 10 Example 1.4 Photodissociation of Molecules: The Driven Morse Oscillator 13 2 Transport in Two Dimensional Maps: General Principles and Results 17 2.1 Mathematical Framework and Definitions 18 2.2 Transport Across a Boundary 20 2.3 Statement of the General Transport Problem and Some Results 29 2.4 Examples 38 Example 2.1 The Oscillating Vortex Pair Flow Geometry 38 Example 2.2 The 1:1 Resonance or Periodically Forced Pendulum Geometry . 44 Example 2.3 52 Example 2.4 53 2.5 Chaos 54 2.6 Melnikov s Method and Transport Issues 64 2.7 Special Results for Area Preserving Maps: Quasiperiodic Orbits 73 2.8 Nonhyperbolicity 79 3 Convective Mixing and Transport Problems in Fluid Mechanics 81 3.1 The Oscillating Vortex Pair Flow 83 3.2 Two Dimensional, Time Periodic Rayleigh Benard Convection 101 xii Contents 4 Transport in Quasiperiodically Forced Systems: Dynamics Generated by Sequences of Maps 121 4.1 The Systems Under Consideration and Phase Space Geometry 123 4.2 The Quasiperiodic Melnikov Function 129 4.3 The Geometry of Ws{t€)C Wu{tc) and Lobes 132 4.4 Lobe Dynamics and Flux 142 4.5 Two Applications 166 4.6 The Nonautonomous System: Phase Space Structure for Sequences of Maps 172 4.7 Numerical Simulations of Lobe Structures 176 4.8 Chaos 184 4.9 Final Remarks 190 5 Markov Models 193 5.1 Implementing the Markov Model and an Application to the OVP Flow 193 5.2 Comparing the Markov Model with the Methods Developed in Chapter 2 for Two Dimensional, Time Periodic Rayleigh Benard Convection 197 5.3 Comparison of the MacKay, Meiss, Ott, and Percival Markov Model with the Transport Theory of Rom Kedar and Wiggins 202 6 Transport in fc Degree of Freedom Hamiltonian Systems, 3 k oo: The Generalization of Separatrices to Higher Dimensions and Their Geometrical Structure 209 6.1 The Mathematical Framework for Transport in fc Degree of Freedom Hamiltonian Systems, 3 fc oo 218 6.1.1 The Class of Perturbed, Integrable Hamiltonian Systems under Consideration 218 6.1.2 The Geometric Structure of the Unperturbed Phase Space 219 6.1.3 Reduction to a Poincare Map 228 6.1.4 The Geometric Structure of the Perturbed Phase Space 230 6.2 Existence of Transverse Homoclinic and Heteroclinic Manifolds: The Higher Dimensional Melnikov Theory . . . 232 6.3 An Example 235 6.4 Transport Near Resonances 249 6.4.1 Single Resonances 250 6.4.2 Higher Order Terms in the Normal Form 256 6.4.3 Single Resonance in 3 d.o.f. Systems 257 6.4.4 Nonisolation of Resonances: Resonance Channels . 260 6.4.5 Multiple Resonances 261 6.4.6 Resonance of Multiplicity 2 in 3 d.o.f. Systems . . . 264 Contents xiii 6.5 The Relationship to Arnold Diffusion 267 6.6 On the Advantage of Considering Near Integrable Systems 269 6.7 Final Remarks 270 Appendix 1 Proofs of Theorems 2.6 and 2.12 273 Appendix 2 Derivation of the Quasiperiodic Melnikov Functions from Chapter 4 285 References 290 Index 297
any_adam_object 1
author Wiggins, Stephen ca. 20./21. Jh
author_GND (DE-588)1247764664
author_facet Wiggins, Stephen ca. 20./21. Jh
author_role aut
author_sort Wiggins, Stephen ca. 20./21. Jh
author_variant s w sw
building Verbundindex
bvnumber BV004837707
callnumber-first Q - Science
callnumber-label QA614
callnumber-raw QA614.8
callnumber-search QA614.8
callnumber-sort QA 3614.8
callnumber-subject QA - Mathematics
classification_rvk SK 520
SK 810
SK 950
classification_tum MAT 344f
PHY 063f
ctrlnum (OCoLC)24792948
(DE-599)BVBBV004837707
dewey-full 515/.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.352
dewey-search 515/.352
dewey-sort 3515 3352
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03196nam a2200793 cb4500</leader><controlfield tag="001">BV004837707</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220422 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">920525s1992 xx d||| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387975225</subfield><subfield code="9">0-387-97522-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540975225</subfield><subfield code="9">3-540-97522-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24792948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004837707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.352</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 063f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58Fxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76Rxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">34C35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiggins, Stephen</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247764664</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaotic transport in dynamical systems</subfield><subfield code="c">Stephen Wiggins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 301 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Comportement chaotique des systèmes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systèmes dynamiques différentiables</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transport, théorie du</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002978660&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002978660</subfield></datafield></record></collection>
id DE-604.BV004837707
illustrated Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 0387975225
3540975225
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002978660
oclc_num 24792948
open_access_boolean
owner DE-12
DE-384
DE-739
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-703
DE-29T
DE-19
DE-BY-UBM
DE-634
DE-83
DE-188
owner_facet DE-12
DE-384
DE-739
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-703
DE-29T
DE-19
DE-BY-UBM
DE-634
DE-83
DE-188
physical XIII, 301 S. graph. Darst.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher Springer
record_format marc
series Interdisciplinary applied mathematics
series2 Interdisciplinary applied mathematics
spellingShingle Wiggins, Stephen ca. 20./21. Jh
Chaotic transport in dynamical systems
Interdisciplinary applied mathematics
Comportement chaotique des systèmes ram
Systèmes dynamiques différentiables ram
Transport, théorie du ram
Chaotic behavior in systems
Differentiable dynamical systems
Transport theory
Transporttheorie (DE-588)4185936-4 gnd
Transportprozess (DE-588)4185932-7 gnd
Dynamisches System (DE-588)4013396-5 gnd
Nichtlineares dynamisches System (DE-588)4126142-2 gnd
Chaos (DE-588)4191419-3 gnd
Differenzierbares dynamisches System (DE-588)4137931-7 gnd
Chaotisches System (DE-588)4316104-2 gnd
subject_GND (DE-588)4185936-4
(DE-588)4185932-7
(DE-588)4013396-5
(DE-588)4126142-2
(DE-588)4191419-3
(DE-588)4137931-7
(DE-588)4316104-2
title Chaotic transport in dynamical systems
title_auth Chaotic transport in dynamical systems
title_exact_search Chaotic transport in dynamical systems
title_full Chaotic transport in dynamical systems Stephen Wiggins
title_fullStr Chaotic transport in dynamical systems Stephen Wiggins
title_full_unstemmed Chaotic transport in dynamical systems Stephen Wiggins
title_short Chaotic transport in dynamical systems
title_sort chaotic transport in dynamical systems
topic Comportement chaotique des systèmes ram
Systèmes dynamiques différentiables ram
Transport, théorie du ram
Chaotic behavior in systems
Differentiable dynamical systems
Transport theory
Transporttheorie (DE-588)4185936-4 gnd
Transportprozess (DE-588)4185932-7 gnd
Dynamisches System (DE-588)4013396-5 gnd
Nichtlineares dynamisches System (DE-588)4126142-2 gnd
Chaos (DE-588)4191419-3 gnd
Differenzierbares dynamisches System (DE-588)4137931-7 gnd
Chaotisches System (DE-588)4316104-2 gnd
topic_facet Comportement chaotique des systèmes
Systèmes dynamiques différentiables
Transport, théorie du
Chaotic behavior in systems
Differentiable dynamical systems
Transport theory
Transporttheorie
Transportprozess
Dynamisches System
Nichtlineares dynamisches System
Chaos
Differenzierbares dynamisches System
Chaotisches System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002978660&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004216726
work_keys_str_mv AT wigginsstephen chaotictransportindynamicalsystems