Nonlinear stability and bifurcation theory

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Troger, Hans (VerfasserIn), Steindl, Alois (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Wien u.a. Springer 1991
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV004802328
003 DE-604
005 20220303
007 t
008 920401s1991 d||| |||| 00||| eng d
020 |a 3211822925  |9 3-211-82292-5 
020 |a 0387822925  |9 0-387-82292-5 
035 |a (OCoLC)630823680 
035 |a (DE-599)BVBBV004802328 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91  |a DE-91G  |a DE-384  |a DE-92  |a DE-739  |a DE-20  |a DE-703  |a DE-29T  |a DE-706  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
084 |a SK 520  |0 (DE-625)143244:  |2 rvk 
084 |a SK 810  |0 (DE-625)143257:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a UF 1800  |0 (DE-625)145565:  |2 rvk 
084 |a 73Hxx  |2 msc 
084 |a 93Dxx  |2 msc 
084 |a MAT 587f  |2 stub 
084 |a MAT 344f  |2 stub 
100 1 |a Troger, Hans  |e Verfasser  |4 aut 
245 1 0 |a Nonlinear stability and bifurcation theory  |c Hans Troger ; Alois Steindl 
264 1 |a Wien u.a.  |b Springer  |c 1991 
300 |a XI, 407 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 389 - 401 
650 0 7 |a Stabilität  |0 (DE-588)4056693-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Stabilitätstheorie  |0 (DE-588)4171761-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Verzweigung  |g Mathematik  |0 (DE-588)4078889-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Stabilität  |0 (DE-588)4056693-6  |D s 
689 0 1 |a Verzweigung  |g Mathematik  |0 (DE-588)4078889-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Nichtlineare Stabilitätstheorie  |0 (DE-588)4171761-2  |D s 
689 1 1 |a Verzweigung  |g Mathematik  |0 (DE-588)4078889-1  |D s 
689 1 |5 DE-604 
700 1 |a Steindl, Alois  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002953262&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-002953262 

Datensatz im Suchindex

DE-BY-TUM_call_number 0510/ohne Sign.
0740/M.3.3705
0001/92 A 81
DE-BY-TUM_katkey 546817
DE-BY-TUM_media_number TEMP2887502
040000921046
TEMP2887501
_version_ 1816711586091368449
adam_text Contents 1 Introduction 1 2 Representation of systems 23 2.1 Dynamical systems 24 2.1.1 Time continuous system 24 2.1.2 Time discrete system 26 2.2 Statical systems 31 2.3 Definitions of stability 36 2.3.1 Stability in the sense of Ljapunov 37 2.3.2 Structural stability (robustness, coarseness) .... 40 3 Reduction process, bifurcation equations 46 3.1 Finite dimensional dynamical systems 46 3.1.1 Steady states 46 3.1.2 Periodic motions 60 3.2 Infinite dimensional statical and dynamical systems .... 62 3.2.1 Statical systems 63 3.2.2 Dynamical systems 66 4 Application of the reduction process 69 4.1 Equilibria of finite dimensional systems 69 4.1.1 Double pendulum with axially elastic rods and fol¬ lower force loading 69 4.1.2 Double pendulum with elastic end support and fol¬ lower force loading 74 4.1.3 Double pendulum under aerodynamic excitation . 79 4.1.4 Loss of stability of the straight line motion of a tractor semitrailer 82 4.1.5 Loss of stability of the straight line motion of a railway vehicle 85 4.1.6 Summary of Section 4.1 87 4.2 Periodic solutions of finite dimensional systems 88 4.2.1 Mechanical model and equations of motion .... 89 viii Contents ix 4.2.2 Calculation of the power series expansion of the Poincare mapping 91 4.2.3 Stability boundary in parameter space 93 4.2.4 Center manifold reduction 95 4.3 Finite and infinite dimensional statical systems 97 4.3.1 Buckling of a rod: discrete model 97 4.3.2 Buckling of a rod: continuous model 101 4.3.3 Buckling of a circular ring 105 4.3.4 Buckling at a double eigenvalue: rectangular plate 110 4.3.5 The pattern formation problem: buckling of com¬ plete spherical shells 124 5 Bifurcations under symmetries 143 5.1 Introduction 143 5.2 Finite dimensional dynamical systems 151 5.2.1 Two zero roots 155 5.2.2 Two purely imaginary pairs 157 5.3 Infinite dimensional statical systems 159 5.4 Infinite dimensional dynamical systems 167 6 Discussion of the bifurcation equations 179 6.1 Transformation to normal form 180 6.1.1 Time continuous dynamical systems 180 6.1.2 Time discrete dynamical systems 192 6.1.3 Statical systems 195 6.2 Codimension 198 6.2.1 Static bifurcation 200 6.2.2 Dynamic bifurcation 206 6.3 Determinacy 208 6.4 Unfolding 212 6.5 Classification 214 6.5.1 Dynamic bifurcation 214 6.5.2 Static bifurcation: elementary catastrophe theory . 219 6.5.3 The unfolding theory of Golubitsky and Schaeffer . 220 6.5.4 Restricted generic bifurcation 226 6.6 Bifurcation diagrams 227 6.6.1 Statical systems 227 6.6.2 Time continuous dynamical systems 246 6.6.3 Time discrete dynamical systems 269 6.6.4 Symmetric dynamical systems 275 6.6.5 Symmetric statical systems 283 x Contents Appendix 287 A Linear spaces and linear operators 287 A.I Linear spaces 287 A.2 Linear operators 292 B Transformation of matrices to Jordan form 297 C Adjoint and self adjoint linear differential operators 301 C.I Calculation of the adjoint operator 301 C.2 Self adjoint differential operators 303 D Projection operators 306 D.I General considerations 306 D.2 Projection for non self adjoint operators 308 D.3 Application to the Galerkin reduction 310 E Spectral decomposition 311 E.I Derivation of an inversion formula 311 E.2 Three examples 313 F Shell equations on the complete sphere 316 F.I Tensor notations in curvilinear coordinates 316 F.2 Spherical harmonics 320 G Some properties of groups 324 G.I Naive definition of a group 324 G.2 Symmetry groups 325 G.3 Representation of groups by matrices 328 G.4 Transformation of functions and operators 329 G.5 Examples of invariant functions and operators 332 G.6 Abstract definition of a group 333 G.7 The orthogonal groups O(n) and SO(n) 335 G.8 The Euclidean group E(3) 338 H Stability boundaries in parameter space 340 I Differential equation of an elastic ring 344 1.1 Equilibrium equations and bending 344 1.2 Ring equations 345 J Shallow shell and plate equations 348 J.I Deformation of the shell 349 J.2 Constitutive law 351 J.3 Equations of equilibrium 352 J.4 Special cases 354 Contents xi J.4.1 Plate 354 J.4.2 Sphere 354 J.4.3 Cylinder 355 K Shell equations for axisymmetric deformations 356 K.I Geometrical relations 356 K.2 Stress resultants, couples and equilibrium equations . . . 361 K.3 Stress strain relations 362 K.4 Spherical shell 363 L Equations of motion of a fluid conveying tube 366 L.I Geometry of tube deformation 367 L.2 Stress strain relationship 369 L.3 Linear and angular momentum 370 L.4 Tube equations and boundary conditions 372 M Various concepts of equivalences 376 M.I Right equivalence 377 M.2 Contact equivalence 379 M.3 Vector field equivalence 379 M.4 Bifurcation equivalence 382 M.5 Recognition problem 383 N Slowly varying parameter 384 O Transformation of dynamical systems into standard form386 O.I Power series expansion 386 O.2 Recursive calculation 388 Bibliography 389 Index 402
any_adam_object 1
author Troger, Hans
Steindl, Alois
author_facet Troger, Hans
Steindl, Alois
author_role aut
aut
author_sort Troger, Hans
author_variant h t ht
a s as
building Verbundindex
bvnumber BV004802328
classification_rvk SK 520
SK 810
SK 540
UF 1800
classification_tum MAT 587f
MAT 344f
ctrlnum (OCoLC)630823680
(DE-599)BVBBV004802328
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01995nam a2200505 c 4500</leader><controlfield tag="001">BV004802328</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220303 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920401s1991 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3211822925</subfield><subfield code="9">3-211-82292-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387822925</subfield><subfield code="9">0-387-82292-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)630823680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004802328</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1800</subfield><subfield code="0">(DE-625)145565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">73Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93Dxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 587f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Troger, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear stability and bifurcation theory</subfield><subfield code="c">Hans Troger ; Alois Steindl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 407 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 389 - 401</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Stabilitätstheorie</subfield><subfield code="0">(DE-588)4171761-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Stabilitätstheorie</subfield><subfield code="0">(DE-588)4171761-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steindl, Alois</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002953262&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002953262</subfield></datafield></record></collection>
id DE-604.BV004802328
illustrated Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 3211822925
0387822925
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002953262
oclc_num 630823680
open_access_boolean
owner DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-384
DE-92
DE-739
DE-20
DE-703
DE-29T
DE-706
DE-634
DE-83
DE-11
DE-188
owner_facet DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-384
DE-92
DE-739
DE-20
DE-703
DE-29T
DE-706
DE-634
DE-83
DE-11
DE-188
physical XI, 407 S. graph. Darst.
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Springer
record_format marc
spellingShingle Troger, Hans
Steindl, Alois
Nonlinear stability and bifurcation theory
Stabilität (DE-588)4056693-6 gnd
Nichtlineare Stabilitätstheorie (DE-588)4171761-2 gnd
Verzweigung Mathematik (DE-588)4078889-1 gnd
subject_GND (DE-588)4056693-6
(DE-588)4171761-2
(DE-588)4078889-1
title Nonlinear stability and bifurcation theory
title_auth Nonlinear stability and bifurcation theory
title_exact_search Nonlinear stability and bifurcation theory
title_full Nonlinear stability and bifurcation theory Hans Troger ; Alois Steindl
title_fullStr Nonlinear stability and bifurcation theory Hans Troger ; Alois Steindl
title_full_unstemmed Nonlinear stability and bifurcation theory Hans Troger ; Alois Steindl
title_short Nonlinear stability and bifurcation theory
title_sort nonlinear stability and bifurcation theory
topic Stabilität (DE-588)4056693-6 gnd
Nichtlineare Stabilitätstheorie (DE-588)4171761-2 gnd
Verzweigung Mathematik (DE-588)4078889-1 gnd
topic_facet Stabilität
Nichtlineare Stabilitätstheorie
Verzweigung Mathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002953262&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT trogerhans nonlinearstabilityandbifurcationtheory
AT steindlalois nonlinearstabilityandbifurcationtheory