Stochastic differential equations an introduction with applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Øksendal, Bernt K. 1945- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin u.a. Springer 1992
Ausgabe:3. ed.
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV004687441
003 DE-604
005 20040220
007 t
008 911209s1992 gw |||| 00||| eng d
020 |a 3540533354  |9 3-540-53335-4 
020 |a 0387533354  |9 0-387-53335-4 
035 |a (OCoLC)246776666 
035 |a (DE-599)BVBBV004687441 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-91  |a DE-91G  |a DE-19  |a DE-92  |a DE-355  |a DE-29T  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA274.23 
082 0 |a 519.2  |2 20 
084 |a QH 237  |0 (DE-625)141552:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 606f  |2 stub 
084 |a 60H15  |2 msc 
084 |a 60H10  |2 msc 
100 1 |a Øksendal, Bernt K.  |d 1945-  |e Verfasser  |0 (DE-588)128742054  |4 aut 
245 1 0 |a Stochastic differential equations  |b an introduction with applications  |c Bernt Øksendal 
250 |a 3. ed. 
264 1 |a Berlin u.a.  |b Springer  |c 1992 
300 |a XIII, 224 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Universitext 
650 7 |a Equations différentielles stochastiques  |2 ram 
650 4 |a Équations différentielles stochastiques 
650 4 |a Stochastic differential equations 
650 0 7 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |D s 
689 0 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002879079&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-002879079 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/MAT 606f 2002 A 1026(3)
0001/92 A 1606
DE-BY-TUM_katkey 540519
DE-BY-TUM_media_number 040020659334
040000958527
_version_ 1816711581034086400
adam_text XI Contents I. INTRODUCTION 1 Some problems (1-6) where stochastic differential equations play an essential role in the solution II. SOME MATHEMATICAL PRELIMINARIES 5 Random variables, independence, stochastic processes 5 Kolmogorov s extension theorem 7 Brownian motion 7 Basic properties of Brownian motion 8 Versions of processes and Kolmogorov s continuity theorem 10 Exercises 11 III. ITO INTEGRALS 14 Mathematical interpretation of equations involving noise 14 The Ito integral 18 Some properties of the Ito integral 22 Martingales 22 Extensions of the Ito integral 25 Comparison between Ito and Stratonovich integrals 27 Exercises 29 IV. STOCHASTIC INTEGRALS AND THE ITO FORMULA 32 Stochastic integrals 32 The 1-dimensional Ito formula 32 The multi-dimensional Ito formula 37 Exercises 38 V. STOCHASTIC DIFFERENTIAL EQUATIONS 44 The population growth model and other examples 44 Brownian motion on the unit circle 48 Existence and uniqueness theorem for stochastic differential equations 48 Weak and strong solutions 53 Exercises 54 VI. THE FILTERING PROBLEM 58 Statement of the general problem 59 The linear filtering problem 60 Step 1: Z-linear and Z-measurable estimates 63 Step 2: The innovation process 65 Step 3: The innovation process and Brownian motion 68 Step 4: An explicit formula for Xt 70 XII Step 5: The stochastic differential equation for Xt 71 The 1-dimensional Kalman-Bucy filter 73 Examples 74 The multi-dimensional Kalman-Bucy filter 79 Exercises 80 VII. DIFFUSIONS: BASIC PROPERTIES 86 Definition of an Ito diffusion 86 (A) The Markov property 86 (B) The strong Markov property 89 Hitting distribution, harmonic measure and the mean value property 93 (C) The generator of a diffusion 93 (D) The Dynkin formula 96 (E) The characteristic operator 97 Examples 99 Exercises 100 VIII. OTHER TOPICS IN DIFFUSION THEORY 105 (A) Kolmogorov s backward equation The resolvent 105 (B) The Feynman-Kac formula. Killing 108 (C) The martingale problem 110 (D) When is a stochastic integral a diffusion? 112 How to recognize a Brownian motion 117 (E) Random time change 117 Time change formula for Ito integrals 119 Examples: Brownian motion on the unit sphere 120 Harmonic and analytic functions 121 (F) The Cameron-Martin-Girsanov formula I 123 The Cameron-Martin-Girsanov transformation 126 The Cameron-Martin-Girsanov formula II 126 Exercises 127 IX. APPLICATIONS TO BOUNDARY VALUE PROBLEMS 133 (A) The Dirichlet problem 133 Regular points 135 Examples 135 The stochastic Dirichlet problem 138 Existence and uniqueness of solution 139 When is the solution of the stochastic Dirichlet problem also a solution of the original Dirichlet problem? 141 Examples 143 (B) The Poisson problem 144 A stochastic version 145 XIII Existence of solution 145 Uniqueness of solution 147 The combined Dirichlet-Poisson problem 147 The Green measure 148 Exercises 150 X. APPLICATION TO OPTIMAL STOPPING 155 Statement of the problem 155 Least superharmonic majorants 159 Existence theorem for optimal stopping 161 Uniqueness theorem for optimal stopping 165 Examples: 1) Some stopping problems for Brownian motion 166 2) When is the right time to sell the stocks? 168 3) When to quit a contest 171 4) The marriage problem 173 Exercises 175 XI. APPLICATION TO STOCHASTIC CONTROL 180 Statement of the problem 180 The Hamilton-Jacobi-Bellman (HJB) equation 182 A converse of the HJB equation 185 Markov controls versus general adaptive controls 186 The linear regulator problem 187 An optimal portfolio selection problem 190 A simple problem where the optimal process is discontinuous 192 Exercises 194 APPENDIX A: NORMAL RANDOM VARIABLES 200 APPENDIX B: CONDITIONAL EXPECTATIONS 203 APPENDLX C: UNIFORM INTEGRABILITY AND MARTINGALE CONVERGENCE 205 BIBLIOGRAPHY 208 LIST OF FREQUENTLY USED NOTATION AND SYMBOLS 215 INDEX 218
any_adam_object 1
author Øksendal, Bernt K. 1945-
author_GND (DE-588)128742054
author_facet Øksendal, Bernt K. 1945-
author_role aut
author_sort Øksendal, Bernt K. 1945-
author_variant b k ø bk bkø
building Verbundindex
bvnumber BV004687441
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274.23
callnumber-search QA274.23
callnumber-sort QA 3274.23
callnumber-subject QA - Mathematics
classification_rvk QH 237
SK 820
classification_tum MAT 606f
ctrlnum (OCoLC)246776666
(DE-599)BVBBV004687441
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
edition 3. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01755nam a2200469 c 4500</leader><controlfield tag="001">BV004687441</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">911209s1992 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540533354</subfield><subfield code="9">3-540-53335-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387533354</subfield><subfield code="9">0-387-53335-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246776666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004687441</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60H15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Øksendal, Bernt K.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128742054</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic differential equations</subfield><subfield code="b">an introduction with applications</subfield><subfield code="c">Bernt Øksendal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 224 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations différentielles stochastiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002879079&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002879079</subfield></datafield></record></collection>
id DE-604.BV004687441
illustrated Not Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 3540533354
0387533354
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002879079
oclc_num 246776666
open_access_boolean
owner DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-92
DE-355
DE-BY-UBR
DE-29T
DE-83
DE-11
DE-188
owner_facet DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-92
DE-355
DE-BY-UBR
DE-29T
DE-83
DE-11
DE-188
physical XIII, 224 S.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher Springer
record_format marc
series2 Universitext
spellingShingle Øksendal, Bernt K. 1945-
Stochastic differential equations an introduction with applications
Equations différentielles stochastiques ram
Équations différentielles stochastiques
Stochastic differential equations
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
subject_GND (DE-588)4057621-8
title Stochastic differential equations an introduction with applications
title_auth Stochastic differential equations an introduction with applications
title_exact_search Stochastic differential equations an introduction with applications
title_full Stochastic differential equations an introduction with applications Bernt Øksendal
title_fullStr Stochastic differential equations an introduction with applications Bernt Øksendal
title_full_unstemmed Stochastic differential equations an introduction with applications Bernt Øksendal
title_short Stochastic differential equations
title_sort stochastic differential equations an introduction with applications
title_sub an introduction with applications
topic Equations différentielles stochastiques ram
Équations différentielles stochastiques
Stochastic differential equations
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
topic_facet Equations différentielles stochastiques
Équations différentielles stochastiques
Stochastic differential equations
Stochastische Differentialgleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002879079&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT øksendalberntk stochasticdifferentialequationsanintroductionwithapplications