A book of abstract algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pinter, Charles C. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York u.a. McGraw-Hill 1990
Ausgabe:2. ed.
Schriftenreihe:International series inpure and applied mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV004444931
003 DE-604
005 00000000000000.0
007 t
008 910807s1990 d||| |||| 00||| eng d
020 |a 0070501386  |9 0-07-050138-6 
035 |a (OCoLC)300306985 
035 |a (DE-599)BVBBV004444931 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-188 
084 |a SK 200  |0 (DE-625)143223:  |2 rvk 
084 |a MAT 110f  |2 stub 
100 1 |a Pinter, Charles C.  |e Verfasser  |4 aut 
245 1 0 |a A book of abstract algebra  |c Charles C. Pinter 
250 |a 2. ed. 
264 1 |a New York u.a.  |b McGraw-Hill  |c 1990 
300 |a XVIII, 384 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a International series inpure and applied mathematics 
650 0 7 |a Universelle Algebra  |0 (DE-588)4061777-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebra  |0 (DE-588)4001156-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Algebra  |0 (DE-588)4001156-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Universelle Algebra  |0 (DE-588)4061777-4  |D s 
689 1 |5 DE-188 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002757414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-002757414 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804118617784057856
adam_text A BOOK OF ABSTRACT ALGEBRA Second Edition Charles C Pinter Professor of Mathematics Bucknell University McGraw-Hill Publishing Company New York St Louis San Francisco Auckland Bogota Caracas Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi Oklahoma City Paris San Juan Sao Paulo Singapore Sydney Tokyo Toronto CONTENTS* Preface xv Chapter 1 Why Abstract Algebra? l History of Algebra New Algebras Algebraic Structures Axioms and Axiomatic Algebra Abstraction in Algebra Chapter 2 Operat ions 19 Operations on a Set Properties of Operations Chapter 3 The Definition of Groups 25 Groups Examples of Infinite and Finite Groups Examples of Abelian and Nonabelian Groups Group Tables Theory of Coding: Maximum-Likelihood Decoding Chapter 4 Elementary Properties of Groups 36 Uniqueness of Identity and Inverses Properties of Inverses Direct Product of Groups Chapter 5 Subgroups 44 Definition of Subgroup Generators and Defining Relations Cayley Diagrams Center of a Group Group Codes; Hamming Code * Italic headings indicate topics discussed in the exercise sections X CONTENTS Chapter 6 Functions 56 Injective, Surjective, Bijective Function Composite and Inverse of Functions Finite-State Machines Automata and Their Semigroups Chapter 7 Groups of Permutations 69 Symmetric Groups Dihedral Groups An Application of Groups to Anthropology Chapter 8 Permutations of a Finite Set 80 Decomposition of Permutations into Cycles Transpositions Even and Odd Permutations Alternating Groups Chapter 9 Isomorphism 90 The Concept of Isomorphism in Mathematics Isomorphic and Nonisomorphic Groups Cayley s Theorem Group Automorphisms Chapter 10 O rde r pf G r oup E lements 103 Powers/Multiples of Group Elements Laws of Exponents Properties of the Order of Group Elements Chapter 11 Cyclic Groups 112 Finite and Infinite Cyclic Groups Isomorphism of Cyclic Groups Subgroups of Cyclic Groups Chapter 12 Part i t ions and Equivalence Relat ions 119 Chapter 13 Count ing Cosets 126 Lagrange s Theorem and Elementary Consequences Survey of Groups of Order s 10 Number of Conjugate Elements Group Acting on a Set Chapter 14 Homomorph i sms 136 Elementary Properties of Homomorphisms Normal Subgroups Kernel and Range Inner Direct Products Conjugate Subgroups CONTENTS Chapter 15 Quotient Groups 147 Quotient Group Construction Examples and Applications The Class Equation Induction on the Order of a Group Chapter 16 The Fundamental Homomorphism Theorem 157 Fundamental Homomorphism Theorem and Some Consequences The Isomorphism Theorems The Correspondence Theorem Cauchy s Theorem Sylow Subgroups Sylow s Theorem Decomposition Theorem for Finite Abelian Groups Chapter 17 Rings: Definitions and Elementary Properties 169 Commutative Rings Unity Invertibles and Zero-Divisors Integral Domain Field Chapter 18 Ideals and Homomorphisms 181 Chapter 19 Quotient Rings Construction of Quotient Rings Examples Fundamental Homomorphism Theorem and Some Consequences Properties of Prime and Maximal Ideals Chapter 20 Integral Domains Characteristic of an Integral Domain Properties of the Characteristic Finite Fields Construction of the Field of Quotients Chapter 21 The Integers Ordered Integral Domains Well-ordering Characterization of Z Up to Isomorphism Induction Division Algorithm Mathematical Chapter 22 Factoring into Primes Ideals of Z Properties of the GCD Relatively Prime Integers Primes Euclid s Lemma Unique Factorization Xii CONTENTS Chapter 23 Elements of Number Theory (Optional) Properties of Congruence Theorems of Fermat and Euler Solutions of Linear Congruences Chinese Remainder Theorem Wilson s Theorem and Consequences Quadratic Residues The Legendre Symbol Primitive Roots Chapter 24 Rings of Polynomials 240 Motivation and Definitions Domain of Polynomials over a Field Division Algorithm Polynomials in Several Variables Fields of Polynomial Quotients Chapter 25 Factoring Polynomials Ideals of F[x] Properties of the GCD Irreducible Polynomials Unique factorization Euclidean Algorithm Chapter 26 Substitution in Polynomials Roots and Factors Polynomial Functions Polynomials over Q Eisenstein s Irreducibility Criterion Polynomials over the Reals Polynomial Interpolation Chapter 27 Extensions of Fields Algebraic and Transcendental Elements The Minimum Polynomial Basic Theorem on Field Extensions Chapter 28 Vector Spaces Elementary Properties of Vector Spaces Linear Independence Basis Dimension Linear Transformations Chapter 29 Degrees of Field Extensions 292 Simple and Iterated Extensions Degree of an Iterated Extension Fields of Algebraic Elements Algebraic Numbers Algebraic Closure CONTENTS Xiii Chapter 30 Ruler and Compass 301 Constructive Points and Numbers Impossible Constructions Constructive Angles and Polygons Chapter 31 Galois Theory: Preamble 311 Multiple Roots Root Field Extension of a Field Isomorphism Roots of Unity Separable Polynomials Normal Extensions Chapter 32 Galois Theory: The Heart of the Matter 323 Field Automorphisms The Galois Group The Galois Correspondence Fundamental Theorem of Galois Theory Computing Galois Groups Chapter 33 Solving Equations by Radicals 334 Radical Extensions Abelian Extensions Solvable Groups Insolvability of the Quintic Appendix A Review of Set Theory 345 Appendix B Review of the Integers 349 Appendix C Review of Mathematical Induction Answers to Selected Exercises 353 Index - 381
any_adam_object 1
author Pinter, Charles C.
author_facet Pinter, Charles C.
author_role aut
author_sort Pinter, Charles C.
author_variant c c p cc ccp
building Verbundindex
bvnumber BV004444931
classification_rvk SK 200
classification_tum MAT 110f
ctrlnum (OCoLC)300306985
(DE-599)BVBBV004444931
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01553nam a2200409 c 4500</leader><controlfield tag="001">BV004444931</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910807s1990 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0070501386</subfield><subfield code="9">0-07-050138-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)300306985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004444931</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinter, Charles C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A book of abstract algebra</subfield><subfield code="c">Charles C. Pinter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 384 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International series inpure and applied mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002757414&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002757414</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
genre 1\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV004444931
illustrated Illustrated
indexdate 2024-07-09T16:13:09Z
institution BVB
isbn 0070501386
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002757414
oclc_num 300306985
open_access_boolean
owner DE-188
owner_facet DE-188
physical XVIII, 384 S. graph. Darst.
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
publisher McGraw-Hill
record_format marc
series2 International series inpure and applied mathematics
spelling Pinter, Charles C. Verfasser aut
A book of abstract algebra Charles C. Pinter
2. ed.
New York u.a. McGraw-Hill 1990
XVIII, 384 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
International series inpure and applied mathematics
Universelle Algebra (DE-588)4061777-4 gnd rswk-swf
Algebra (DE-588)4001156-2 gnd rswk-swf
1\p (DE-588)4123623-3 Lehrbuch gnd-content
Algebra (DE-588)4001156-2 s
DE-604
Universelle Algebra (DE-588)4061777-4 s
DE-188
HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002757414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Pinter, Charles C.
A book of abstract algebra
Universelle Algebra (DE-588)4061777-4 gnd
Algebra (DE-588)4001156-2 gnd
subject_GND (DE-588)4061777-4
(DE-588)4001156-2
(DE-588)4123623-3
title A book of abstract algebra
title_auth A book of abstract algebra
title_exact_search A book of abstract algebra
title_full A book of abstract algebra Charles C. Pinter
title_fullStr A book of abstract algebra Charles C. Pinter
title_full_unstemmed A book of abstract algebra Charles C. Pinter
title_short A book of abstract algebra
title_sort a book of abstract algebra
topic Universelle Algebra (DE-588)4061777-4 gnd
Algebra (DE-588)4001156-2 gnd
topic_facet Universelle Algebra
Algebra
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002757414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT pintercharlesc abookofabstractalgebra