Calculus two linear and nonlinear functions
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York u.a.
Springer
1990
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004259131 | ||
003 | DE-604 | ||
005 | 20240206 | ||
007 | t| | ||
008 | 910128s1990 gw d||| |||| 00||| eng d | ||
020 | |a 3540973885 |9 3-540-97388-5 | ||
020 | |a 0387973885 |9 0-387-97388-5 | ||
035 | |a (OCoLC)246752333 | ||
035 | |a (DE-599)BVBBV004259131 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-384 |a DE-739 |a DE-83 |a DE-188 | ||
082 | 0 | |a 515 | |
084 | |a SK 110 |0 (DE-625)143215: |2 rvk | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a MAT 263f |2 stub | ||
084 | |a MAT 260f |2 stub | ||
100 | 1 | |a Flanigan, Francis J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Calculus two |b linear and nonlinear functions |c Francis J. Flanigan ; Jerry L. Kazdan |
250 | |a 2. ed. |b rev. by David L. Frank ... | ||
264 | 1 | |a New York u.a. |b Springer |c 1990 | |
300 | |a XVII, 619 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | 2 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kazdan, Jerry |d 1937- |e Verfasser |0 (DE-588)1077474733 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002649359&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-002649359 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0002 MAT 263f 91 A 2509 |
---|---|
DE-BY-TUM_katkey | 516246 |
DE-BY-TUM_location | 00 |
DE-BY-TUM_media_number | 040000959595 |
_version_ | 1820888196017291264 |
adam_text | FRANCIS J. FLANIGAN JERRY L. KAZDAN CALCULUS TWO LINEAR AND NONLINEAR
FUNCTIONS REVISED BY DAVID L. FRANK, BERT E. FRISTEDT, AND LAWRENCE F.
GRAY WITH 207 ILLUSTRATIONS SPRINGER-VERLAG NEW YORK BERLIN HEIDELBERG
LONDON PARIS TOKYO HONG KONG BARCELONA CONTENTS 0 REMEMBRANCE OF THINGS
PAST 1 0.1 INTRODUCTION 1 0.2 SETS 1 0.2A EXAMPLES AND NOTATION 1 0.2B
SUBSETS 2 0.2C THE SET OF REAL NUMBERS; THE SETS R* 2 0.2D SOME NOTATION
FROM LOGIC 3 0.3 FUNCTIONS 3 0.3A CONCEPTS 3 0.3B THE COMPOSITION OF
FUNCTIONS 4 1 THE ALGEBRA OF R N 5 1.0 INTRODUCTION 5 1.1 THE SPACE R 2
7 1.1A POINTS IN R 2 7 1.1B ALGEBRA IN R 2 8 1.1C VECTORS AS ARROWS 10
1.2 THE SPACE R N 12 1.2A POINTS IN R N 12 1.2B ALGEBRAIC OPERATIONS IN
R N 12 1.2C THE VECTOR SPACE PROPERTIES 13 1.2D PICTURES 14 1.3 LINEAR
SUBSPACES 16 1.3A DEFINITION 16 1.3B A CRITERION FOR LINEAR SUBSPACES 18
1.3C WHERE WE ARE 20 1.4 THE LINEAR SUBSPACES OF M 3 22 1.4A THE PROBLEM
22 1.4B THE STANDARD BASIS 22 1.4C LINES AND PLANES REVISITED 24 1.4D
CLASSIFYING THE LINEAR SUBSPACES OF R 3 26 1.4E LINEAR SUBSPACES AND
HOMOGENEOUS LINEAR EQUATIONS 28 1.5 SYSTEMS OF EQUATIONS 32 V XII
CONTENTS 1.5A THE PROBLEM 32 1.5B ONE EQUATION, SEVERAL UNKNOWNS 32 1.5C
TWO EQUATIONS, SEVERAL UNKNOWNS 35 1.5D THREE OR MORE EQUATIONS IN THREE
OR MORE UNKNOWNS 39 1.5E SOME APPLICATIONS 44 1.6 AFFINE SUBSPACES 49
1.6A SOME DEFINITIONS 49 1.6B AFFINE SUBSPACES AND LINEAR EQUATIONS 52
1.6C PLANES IN R 3 53 1.6D THREE POINTS DETERMINE A PLANE 55 1.7 THE
DIMENSION OF A VECTOR SPACE 58 1.7A LINEAR DEPENDENCE 58 1.7B DIMENSION
61 1.7C LINEAR EQUATIONS AND DIMENSION 64 EXTRA: FUNCTION SPACES 68 2
THE GEOMETRY OF R* 71 2.0 INTRODUCTION 71 2.1 THE NORM OF A VECTOR 71
2.1A ||X|| IN THE PLANE 71 2.1B ||X|| IN R 72 2.2 THE INNER PRODUCT 75
2.2A DEFINITION 75 2.2B ALGEBRAIC PROPERTIES OF (X, Y) 76 2.2C AN
INTERPRETATION IN R 2 77 2.2D PROJECTION AND ANGLES IN R* 79 2.2E
PROJECTION AND DISTANCE IN R 83 2.3 HYPERPLANES AND ORTHOGONALITY IN R*
89 2.4 THE CROSS PRODUCT IN R 3 92 EXTRA: EUCLID USING VECTORS 99 3
LINEAR FUNCTIONS 103 3.0 INTRODUCTION 103 3.1 DEFINITION AND BASIC
PROPERTIES 104 3.1A A DEFINITION AND MANY EXAMPLES 104 3.1B SOME
CONSEQUENCES OF LINEARITY 109 3.1C LINEARITY AND THE STANDARD BASIS 110
3.1D MATRIX NOTATION 112 3.2 LINEAR MAPS AND LINEAR SUBSPACES 116 3.2A
THE IMAGE OF A LINEAR MAP 116 3.2B THE GRAPH OF A LINEAR MAP 121 3.2C
THE NULL SPACE OF A LINEAR MAP 123 3.2D DIM(A/ (L)) + DIM(2T(L)) =
DIM((L)) 125 3.2E ACCOMPLISHMENTS SO FAR 130 3.3 A SPECIAL CASE: LINEAR
FUNCTIONALS 133 CONTENTS XIII 3.4 THE ALGEBRA OF LINEAR MAPS 135 3.4A A
NEW DIRECTION 135 3.4B ADDITION OF LINEAR MAPS 135 3.4C MULTIPLICATION
OF A LINEAR MAP BY A SCALAR 136 3.4D COMPOSITION OF LINEAR MAPS 137 3.5
MATRICES 143 3.5A A SHORTHAND DEVICE 143 3.5B MATRIX NOMENCLATURE 144
3.5C ADDITION OF MATRICES 145 3.5D MULTIPLICATION OF A MATRIX BY A
SCALAR 147 3.5E MULTIPLICATION OF MATRICES 148 3.5F MATRICES AS
FUNCTIONS 152 3.5G SUMMARY 156 3.6 AFFINE MAPS 161 3.6A DEFINITION 161
3.6B AFFINE MAPS AND AFFINE SUBSPACES 161 3.7 ANOTHER SPECIAL CASE: L :
R - R N 167 3.7A INVERSES OF LINEAR MAPS AND SQUARE MATRICES 167 3.7B
GEOMETRY IN R 2 174 3.7C GEOMETRY IN R 3 179 3.8 ISOMETRIES 187 3.8A
FUNDAMENTAL CONCEPTS 187 3.8B ROTATIONS AND REFLECTIONS OF R 2 190 3.8C
ISOMETRIES OF R 194 3.8D RIGID MOTIONS 198 EXTRA: LINEAR MAPS ON
FUNCTION SPACES 202 EXTRA: LINEAR PROGRAMMING 204 4 CURVES: MAPPINGS F :
R - R 9 207 4.0 INTRODUCTION 207 4.1 LIMITS, CONTINUITY, AND CURVES 210
4.1A LIMITS 210 4.1B CONTINUITY 215 4.2 THE TANGENT MAP 225 4.2A WHAT
DIFFERENTIAL CALCULUS IS ALL ABOUT 225 4.2B THE BASIC DEFINITIONS 228
4.2C DIFFERENTIATION RULES 236 4.2D ACCELERATION 237 4.2E CURVES WITH
PRESCRIBED TANGENTS OR ACCELERATIONS . . 239 4.3 ARE LENGTH AND
CURVATURE 244 4.3A LEAST UPPER BOUNDS 244 4.3B DEFINITION OF ARC LENGTH
246 4.3C A FORMULA FOR ARC LENGTH 249 4.3D THE NATURAL PARAMETRIZATION
OF A RECTIFIABLE CURVE . . 253 4.3E CURVATURE 256 * T XIV CONTENTS 5
TOPICS FOR REVIEW AND PREVIEW 263 5.0 INTRODUCTION 263 5.1 FURTHER
CONCEPTS AND PROBLEMS 263 5.1A ANGLES IN R 3 263 5.1B DISTANCE BETWEEN A
POINT AND A LINE 267 5.1C DISTANCE BETWEEN TWO LINES IN R 3 269 5.1D
DISTANCE BETWEEN A POINT AND A CURVE 271 5.1E COMPLEX ARITHMETIC AND
LINEAR MAPS IN R 2 275 5.2 SOME CHALLENGING PROBLEMS 285 5.2A SLICING A
CUBE 286 5.2B CYCLOIDS 288 5.2C SIMULTANEOUS MOTIONS 289 5.3
GRAVITATIONAL MOTION 292 5.3A NEWTON S LAWS 292 5.3B RELATIVELY SMALL
MOTIONS 294 5.3C VERTICAL MOTION 297 5.3D CIRCULAR MOTION 299 5.4
GEOMETRY IN R 302 5.4A HALF SPACES 302 5.4B BALLS AND SPHERES 305 5.4C
CONES OF REVOLUTION 308 5.4D PARABOLOIDS OF REVOLUTION 310 6 FUNCTIONS /
: R - R 313 6.0 INTRODUCTION 313 6.1 CONTINUITY AND LIMITS 319 6.1A
CONTINUITY 319 6.1B PATHWISE CONNECTEDNESS 323 6.1C LIMIT POINTS 326
6.1D LIMITS 328 6.1E INTERIOR POINTS 329 6.2 DIRECTIONAL DERIVATIVES 333
6.2A DEFINITION OF V E /(X 0 ) 333 6.2B COMPUTATION OF V E /(X 0 ) 334
6.2C A GEOMETRIC INTERPRETATION 336 6.3 PARTIAL DERIVATIVES 339 6.3A
INTRODUCTORY COMMENT 339 6.3B DEFINITION AND COMPUTATION 339 6.3C
HIGHER-ORDER PARTIAL DERIVATIVES 342 6.3D WHERE WE ARE 345 6.4 TANGENCY
AND AFFINE APPROXIMATION 348 6.4A INTRODUCTORY EXAMPLE 348 6.4B BASIC
DEFINITION 349 6.4C TANGENT PLANES 353 6.4D APPROXIMATE VALUES 354
CONTENTS 6.5 THE MAIN THEOREMS 357 6.5A VARIOUS DERIVATIVES 357 6.5B
RELATIONSHIPS AMONG VARIOUS DERIVATIVES 357 6.5C DERIVATIVES OF
COMBINATIONS OF FUNCTIONS 361 6.5D THE HEAT-SEEKING BUG 363 6.6 THE
WORLD OF FIRST DERIVATIVES 368 SCALAR-VALUED FUNCTIONS AND EXTREMA 369
7.0 INTRODUCTION 369 7.1 LOCAL EXTREMA ARE CRITICAL POINTS 372 7.2 THE
SECOND DERIVATIVE 379 7.2A THE SINGLE-VARIABLE SITUATION 379 7.2B THE
MEAN VALUE THEOREM 381 7.2C SECOND DERIVATIVES AND THE HESSIAN MATRIX
382 7.2D TAYLOR S THEOREM 385 7.3 THE SECOND DERIVATIVE TEST 388 7.3A
ONE VARIABLE AND APPROXIMATION BY PARABOLAS . . . . 388 7.3B QUADRATIC
FORMS 388 7.3C THE SECOND DERIVATIVE AND CRITICAL POINTS 393 7.4 GLOBAL
EXTREMA 401 7.4A OPEN SETS, CLOSED SETS, AND BOUNDED SETS 401 7.4B
EXISTENCE OF GLOBAL EXTREMA 402 7.5 CONSTRAINED EXTREMA 405 7.5A THE
ISSUE 405 7.5B CONSTRAINTS BY INEQUALITIES 406 7.5C EQUALITY CONSTRAINTS
TREATED BY ELIMINATION 408 7.5D EQUALITY CONSTRAINTS AND LAGRANGE
MULTIPLIERS . . . . 410 VECTOR FUNCTIONS F: M. N - E 9 417 8.0
INTRODUCTION 417 8.1 AFFINE APPROXIMATION AND TANGENCY 423 8.1A BASIC
DEFINITIONS 423 8.1B TOTAL DERIVATIVES AND PARTIAL DERIVATIVES 424 8.2
RULES FOR CALCULATING DERIVATIVES 430 8.2A SUMS AND PRODUCTS 430 8.2B
THE CHAIN RULE 431 8.3 SURFACES IN R 9 438 8.3A PARAMETRIZED SURFACES
438 8.3B TANGENT PLANES OF SURFACES 440 8.3C LEVEL SETS 443 8.4 VECTOR
FIELDS 448 - 1 XVI CONTENTS 9 INTEGRATION IN R* 455 9.0 INTRODUCTION 455
9.1 ESTIMATING THE VALUE OF INTEGRALS 458 9.1A SOME NUMERICAL EXAMPLES
458 9.1B DENSITY 464 9.1C TRIPLE INTEGRALS 468 9.2 COMPUTING INTEGRALS
EXACTLY 473 9.2A ITERATED INTEGRALS 473 9.2B DOMAINS WITH CURVED
BOUNDARIES 475 9.2C INTEGRATION ON DISKS; POLAR COORDINATES 481 9.2D
TRIPLE INTEGRALS 486 9.3 THEORY OF THE INTEGRAL 494 9.3A INTRODUCTION
494 9.3B PROPERTIES OF THE INTEGRAL 494 9.3C DEFINITION AND EXISTENCE OF
THE INTEGRAL: THE ISSUES . 497 9.4 CHANGE OF VARIABLES 500 9.4A AFFINE
CHANGES OF VARIABLES 500 9.4B ANOTHER LOOK AT POLAR COORDINATES 507 9.4C
THE GENERAL CHANGE OF VARIABLES FORMULA 511 9.4D CYLINDRICAL COORDINATES
512 9.4E SPHERICAL COORDINATES 514 9.5 SURFACE AREA 523 10 VECTOR
INTEGRALS AND STOKES THEOREM 529 10.0 INTRODUCTION 529 10.1 LINE
INTEGRALS 530 10.1A SMOOTH ORIENTED CURVES . 530 10.1B DEFINITION OF THE
LINE INTEGRAL 532 10.1C PROPERTIES OF LINE INTEGRALS 535 LO.LD WORK 539
10.2 STOKES THEOREM IN THE PLANE 543 10.2A STOKE S THEOREM FOR A
RECTANGULAR REGION 543 10.2B MORE GENERAL REGIONS 544 10.2C OTHER
VERSIONS 547 10.2D APPLICATIONS 550 10.3 SURFACE INTEGRALS 554 10.3A
SMOOTH ORIENTED SURFACES IN R 3 554 10.3B DEFINITION OF A SURFACE
INTEGRAL 559 10.3C STOKES THEOREM IN R 3 561 10.3D GRAVITATIONAL FORCE
563 10.4 INDEPENDENCE OF PATH; POTENTIAL FUNCTIONS 570 10.4A THE ISSUE
570 10.4B THE MAIN THEOREMS 570 10.4C EXAMPLES 575 CONTENTS XVII ANSWERS
AND PARTIAL ANSWERS TO SELECTED EXERCISES 581 INDEX 611 *
|
any_adam_object | 1 |
author | Flanigan, Francis J. Kazdan, Jerry 1937- |
author_GND | (DE-588)1077474733 |
author_facet | Flanigan, Francis J. Kazdan, Jerry 1937- |
author_role | aut aut |
author_sort | Flanigan, Francis J. |
author_variant | f j f fj fjf j k jk |
building | Verbundindex |
bvnumber | BV004259131 |
classification_rvk | SK 110 SK 220 SK 400 |
classification_tum | MAT 263f MAT 260f |
ctrlnum | (OCoLC)246752333 (DE-599)BVBBV004259131 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01876nam a2200481 c 4500</leader><controlfield tag="001">BV004259131</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240206 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">910128s1990 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540973885</subfield><subfield code="9">3-540-97388-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387973885</subfield><subfield code="9">0-387-97388-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246752333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004259131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 263f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 260f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flanigan, Francis J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus two</subfield><subfield code="b">linear and nonlinear functions</subfield><subfield code="c">Francis J. Flanigan ; Jerry L. Kazdan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed. </subfield><subfield code="b">rev. by David L. Frank ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 619 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazdan, Jerry</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077474733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002649359&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002649359</subfield></datafield></record></collection> |
id | DE-604.BV004259131 |
illustrated | Illustrated |
indexdate | 2024-12-23T11:10:47Z |
institution | BVB |
isbn | 3540973885 0387973885 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002649359 |
oclc_num | 246752333 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-384 DE-739 DE-83 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-384 DE-739 DE-83 DE-188 |
physical | XVII, 619 S. graph. Darst. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spellingShingle | Flanigan, Francis J. Kazdan, Jerry 1937- Calculus two linear and nonlinear functions Lineare Algebra (DE-588)4035811-2 gnd Mehrere Variable (DE-588)4277015-4 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4277015-4 (DE-588)4072798-1 |
title | Calculus two linear and nonlinear functions |
title_auth | Calculus two linear and nonlinear functions |
title_exact_search | Calculus two linear and nonlinear functions |
title_full | Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan |
title_fullStr | Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan |
title_full_unstemmed | Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan |
title_short | Calculus two |
title_sort | calculus two linear and nonlinear functions |
title_sub | linear and nonlinear functions |
topic | Lineare Algebra (DE-588)4035811-2 gnd Mehrere Variable (DE-588)4277015-4 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd |
topic_facet | Lineare Algebra Mehrere Variable Infinitesimalrechnung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002649359&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT flaniganfrancisj calculustwolinearandnonlinearfunctions AT kazdanjerry calculustwolinearandnonlinearfunctions |