Calculus two linear and nonlinear functions

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Flanigan, Francis J. (VerfasserIn), Kazdan, Jerry 1937- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York u.a. Springer 1990
Ausgabe:2. ed.
Schriftenreihe:Undergraduate texts in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV004259131
003 DE-604
005 20240206
007 t|
008 910128s1990 gw d||| |||| 00||| eng d
020 |a 3540973885  |9 3-540-97388-5 
020 |a 0387973885  |9 0-387-97388-5 
035 |a (OCoLC)246752333 
035 |a (DE-599)BVBBV004259131 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-91  |a DE-384  |a DE-739  |a DE-83  |a DE-188 
082 0 |a 515 
084 |a SK 110  |0 (DE-625)143215:  |2 rvk 
084 |a SK 220  |0 (DE-625)143224:  |2 rvk 
084 |a SK 400  |0 (DE-625)143237:  |2 rvk 
084 |a MAT 263f  |2 stub 
084 |a MAT 260f  |2 stub 
100 1 |a Flanigan, Francis J.  |e Verfasser  |4 aut 
245 1 0 |a Calculus two  |b linear and nonlinear functions  |c Francis J. Flanigan ; Jerry L. Kazdan 
250 |a 2. ed.   |b rev. by David L. Frank ... 
264 1 |a New York u.a.  |b Springer  |c 1990 
300 |a XVII, 619 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Undergraduate texts in mathematics 
650 0 7 |a Lineare Algebra  |0 (DE-588)4035811-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Mehrere Variable  |0 (DE-588)4277015-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Infinitesimalrechnung  |0 (DE-588)4072798-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Infinitesimalrechnung  |0 (DE-588)4072798-1  |D s 
689 0 1 |a Mehrere Variable  |0 (DE-588)4277015-4  |D s 
689 0 2 |a Lineare Algebra  |0 (DE-588)4035811-2  |D s 
689 0 |5 DE-604 
700 1 |a Kazdan, Jerry  |d 1937-  |e Verfasser  |0 (DE-588)1077474733  |4 aut 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002649359&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-002649359 

Datensatz im Suchindex

DE-BY-TUM_call_number 0002 MAT 263f 91 A 2509
DE-BY-TUM_katkey 516246
DE-BY-TUM_location 00
DE-BY-TUM_media_number 040000959595
_version_ 1820888196017291264
adam_text FRANCIS J. FLANIGAN JERRY L. KAZDAN CALCULUS TWO LINEAR AND NONLINEAR FUNCTIONS REVISED BY DAVID L. FRANK, BERT E. FRISTEDT, AND LAWRENCE F. GRAY WITH 207 ILLUSTRATIONS SPRINGER-VERLAG NEW YORK BERLIN HEIDELBERG LONDON PARIS TOKYO HONG KONG BARCELONA CONTENTS 0 REMEMBRANCE OF THINGS PAST 1 0.1 INTRODUCTION 1 0.2 SETS 1 0.2A EXAMPLES AND NOTATION 1 0.2B SUBSETS 2 0.2C THE SET OF REAL NUMBERS; THE SETS R* 2 0.2D SOME NOTATION FROM LOGIC 3 0.3 FUNCTIONS 3 0.3A CONCEPTS 3 0.3B THE COMPOSITION OF FUNCTIONS 4 1 THE ALGEBRA OF R N 5 1.0 INTRODUCTION 5 1.1 THE SPACE R 2 7 1.1A POINTS IN R 2 7 1.1B ALGEBRA IN R 2 8 1.1C VECTORS AS ARROWS 10 1.2 THE SPACE R N 12 1.2A POINTS IN R N 12 1.2B ALGEBRAIC OPERATIONS IN R N 12 1.2C THE VECTOR SPACE PROPERTIES 13 1.2D PICTURES 14 1.3 LINEAR SUBSPACES 16 1.3A DEFINITION 16 1.3B A CRITERION FOR LINEAR SUBSPACES 18 1.3C WHERE WE ARE 20 1.4 THE LINEAR SUBSPACES OF M 3 22 1.4A THE PROBLEM 22 1.4B THE STANDARD BASIS 22 1.4C LINES AND PLANES REVISITED 24 1.4D CLASSIFYING THE LINEAR SUBSPACES OF R 3 26 1.4E LINEAR SUBSPACES AND HOMOGENEOUS LINEAR EQUATIONS 28 1.5 SYSTEMS OF EQUATIONS 32 V XII CONTENTS 1.5A THE PROBLEM 32 1.5B ONE EQUATION, SEVERAL UNKNOWNS 32 1.5C TWO EQUATIONS, SEVERAL UNKNOWNS 35 1.5D THREE OR MORE EQUATIONS IN THREE OR MORE UNKNOWNS 39 1.5E SOME APPLICATIONS 44 1.6 AFFINE SUBSPACES 49 1.6A SOME DEFINITIONS 49 1.6B AFFINE SUBSPACES AND LINEAR EQUATIONS 52 1.6C PLANES IN R 3 53 1.6D THREE POINTS DETERMINE A PLANE 55 1.7 THE DIMENSION OF A VECTOR SPACE 58 1.7A LINEAR DEPENDENCE 58 1.7B DIMENSION 61 1.7C LINEAR EQUATIONS AND DIMENSION 64 EXTRA: FUNCTION SPACES 68 2 THE GEOMETRY OF R* 71 2.0 INTRODUCTION 71 2.1 THE NORM OF A VECTOR 71 2.1A ||X|| IN THE PLANE 71 2.1B ||X|| IN R 72 2.2 THE INNER PRODUCT 75 2.2A DEFINITION 75 2.2B ALGEBRAIC PROPERTIES OF (X, Y) 76 2.2C AN INTERPRETATION IN R 2 77 2.2D PROJECTION AND ANGLES IN R* 79 2.2E PROJECTION AND DISTANCE IN R 83 2.3 HYPERPLANES AND ORTHOGONALITY IN R* 89 2.4 THE CROSS PRODUCT IN R 3 92 EXTRA: EUCLID USING VECTORS 99 3 LINEAR FUNCTIONS 103 3.0 INTRODUCTION 103 3.1 DEFINITION AND BASIC PROPERTIES 104 3.1A A DEFINITION AND MANY EXAMPLES 104 3.1B SOME CONSEQUENCES OF LINEARITY 109 3.1C LINEARITY AND THE STANDARD BASIS 110 3.1D MATRIX NOTATION 112 3.2 LINEAR MAPS AND LINEAR SUBSPACES 116 3.2A THE IMAGE OF A LINEAR MAP 116 3.2B THE GRAPH OF A LINEAR MAP 121 3.2C THE NULL SPACE OF A LINEAR MAP 123 3.2D DIM(A/ (L)) + DIM(2T(L)) = DIM((L)) 125 3.2E ACCOMPLISHMENTS SO FAR 130 3.3 A SPECIAL CASE: LINEAR FUNCTIONALS 133 CONTENTS XIII 3.4 THE ALGEBRA OF LINEAR MAPS 135 3.4A A NEW DIRECTION 135 3.4B ADDITION OF LINEAR MAPS 135 3.4C MULTIPLICATION OF A LINEAR MAP BY A SCALAR 136 3.4D COMPOSITION OF LINEAR MAPS 137 3.5 MATRICES 143 3.5A A SHORTHAND DEVICE 143 3.5B MATRIX NOMENCLATURE 144 3.5C ADDITION OF MATRICES 145 3.5D MULTIPLICATION OF A MATRIX BY A SCALAR 147 3.5E MULTIPLICATION OF MATRICES 148 3.5F MATRICES AS FUNCTIONS 152 3.5G SUMMARY 156 3.6 AFFINE MAPS 161 3.6A DEFINITION 161 3.6B AFFINE MAPS AND AFFINE SUBSPACES 161 3.7 ANOTHER SPECIAL CASE: L : R - R N 167 3.7A INVERSES OF LINEAR MAPS AND SQUARE MATRICES 167 3.7B GEOMETRY IN R 2 174 3.7C GEOMETRY IN R 3 179 3.8 ISOMETRIES 187 3.8A FUNDAMENTAL CONCEPTS 187 3.8B ROTATIONS AND REFLECTIONS OF R 2 190 3.8C ISOMETRIES OF R 194 3.8D RIGID MOTIONS 198 EXTRA: LINEAR MAPS ON FUNCTION SPACES 202 EXTRA: LINEAR PROGRAMMING 204 4 CURVES: MAPPINGS F : R - R 9 207 4.0 INTRODUCTION 207 4.1 LIMITS, CONTINUITY, AND CURVES 210 4.1A LIMITS 210 4.1B CONTINUITY 215 4.2 THE TANGENT MAP 225 4.2A WHAT DIFFERENTIAL CALCULUS IS ALL ABOUT 225 4.2B THE BASIC DEFINITIONS 228 4.2C DIFFERENTIATION RULES 236 4.2D ACCELERATION 237 4.2E CURVES WITH PRESCRIBED TANGENTS OR ACCELERATIONS . . 239 4.3 ARE LENGTH AND CURVATURE 244 4.3A LEAST UPPER BOUNDS 244 4.3B DEFINITION OF ARC LENGTH 246 4.3C A FORMULA FOR ARC LENGTH 249 4.3D THE NATURAL PARAMETRIZATION OF A RECTIFIABLE CURVE . . 253 4.3E CURVATURE 256 * T XIV CONTENTS 5 TOPICS FOR REVIEW AND PREVIEW 263 5.0 INTRODUCTION 263 5.1 FURTHER CONCEPTS AND PROBLEMS 263 5.1A ANGLES IN R 3 263 5.1B DISTANCE BETWEEN A POINT AND A LINE 267 5.1C DISTANCE BETWEEN TWO LINES IN R 3 269 5.1D DISTANCE BETWEEN A POINT AND A CURVE 271 5.1E COMPLEX ARITHMETIC AND LINEAR MAPS IN R 2 275 5.2 SOME CHALLENGING PROBLEMS 285 5.2A SLICING A CUBE 286 5.2B CYCLOIDS 288 5.2C SIMULTANEOUS MOTIONS 289 5.3 GRAVITATIONAL MOTION 292 5.3A NEWTON S LAWS 292 5.3B RELATIVELY SMALL MOTIONS 294 5.3C VERTICAL MOTION 297 5.3D CIRCULAR MOTION 299 5.4 GEOMETRY IN R 302 5.4A HALF SPACES 302 5.4B BALLS AND SPHERES 305 5.4C CONES OF REVOLUTION 308 5.4D PARABOLOIDS OF REVOLUTION 310 6 FUNCTIONS / : R - R 313 6.0 INTRODUCTION 313 6.1 CONTINUITY AND LIMITS 319 6.1A CONTINUITY 319 6.1B PATHWISE CONNECTEDNESS 323 6.1C LIMIT POINTS 326 6.1D LIMITS 328 6.1E INTERIOR POINTS 329 6.2 DIRECTIONAL DERIVATIVES 333 6.2A DEFINITION OF V E /(X 0 ) 333 6.2B COMPUTATION OF V E /(X 0 ) 334 6.2C A GEOMETRIC INTERPRETATION 336 6.3 PARTIAL DERIVATIVES 339 6.3A INTRODUCTORY COMMENT 339 6.3B DEFINITION AND COMPUTATION 339 6.3C HIGHER-ORDER PARTIAL DERIVATIVES 342 6.3D WHERE WE ARE 345 6.4 TANGENCY AND AFFINE APPROXIMATION 348 6.4A INTRODUCTORY EXAMPLE 348 6.4B BASIC DEFINITION 349 6.4C TANGENT PLANES 353 6.4D APPROXIMATE VALUES 354 CONTENTS 6.5 THE MAIN THEOREMS 357 6.5A VARIOUS DERIVATIVES 357 6.5B RELATIONSHIPS AMONG VARIOUS DERIVATIVES 357 6.5C DERIVATIVES OF COMBINATIONS OF FUNCTIONS 361 6.5D THE HEAT-SEEKING BUG 363 6.6 THE WORLD OF FIRST DERIVATIVES 368 SCALAR-VALUED FUNCTIONS AND EXTREMA 369 7.0 INTRODUCTION 369 7.1 LOCAL EXTREMA ARE CRITICAL POINTS 372 7.2 THE SECOND DERIVATIVE 379 7.2A THE SINGLE-VARIABLE SITUATION 379 7.2B THE MEAN VALUE THEOREM 381 7.2C SECOND DERIVATIVES AND THE HESSIAN MATRIX 382 7.2D TAYLOR S THEOREM 385 7.3 THE SECOND DERIVATIVE TEST 388 7.3A ONE VARIABLE AND APPROXIMATION BY PARABOLAS . . . . 388 7.3B QUADRATIC FORMS 388 7.3C THE SECOND DERIVATIVE AND CRITICAL POINTS 393 7.4 GLOBAL EXTREMA 401 7.4A OPEN SETS, CLOSED SETS, AND BOUNDED SETS 401 7.4B EXISTENCE OF GLOBAL EXTREMA 402 7.5 CONSTRAINED EXTREMA 405 7.5A THE ISSUE 405 7.5B CONSTRAINTS BY INEQUALITIES 406 7.5C EQUALITY CONSTRAINTS TREATED BY ELIMINATION 408 7.5D EQUALITY CONSTRAINTS AND LAGRANGE MULTIPLIERS . . . . 410 VECTOR FUNCTIONS F: M. N - E 9 417 8.0 INTRODUCTION 417 8.1 AFFINE APPROXIMATION AND TANGENCY 423 8.1A BASIC DEFINITIONS 423 8.1B TOTAL DERIVATIVES AND PARTIAL DERIVATIVES 424 8.2 RULES FOR CALCULATING DERIVATIVES 430 8.2A SUMS AND PRODUCTS 430 8.2B THE CHAIN RULE 431 8.3 SURFACES IN R 9 438 8.3A PARAMETRIZED SURFACES 438 8.3B TANGENT PLANES OF SURFACES 440 8.3C LEVEL SETS 443 8.4 VECTOR FIELDS 448 - 1 XVI CONTENTS 9 INTEGRATION IN R* 455 9.0 INTRODUCTION 455 9.1 ESTIMATING THE VALUE OF INTEGRALS 458 9.1A SOME NUMERICAL EXAMPLES 458 9.1B DENSITY 464 9.1C TRIPLE INTEGRALS 468 9.2 COMPUTING INTEGRALS EXACTLY 473 9.2A ITERATED INTEGRALS 473 9.2B DOMAINS WITH CURVED BOUNDARIES 475 9.2C INTEGRATION ON DISKS; POLAR COORDINATES 481 9.2D TRIPLE INTEGRALS 486 9.3 THEORY OF THE INTEGRAL 494 9.3A INTRODUCTION 494 9.3B PROPERTIES OF THE INTEGRAL 494 9.3C DEFINITION AND EXISTENCE OF THE INTEGRAL: THE ISSUES . 497 9.4 CHANGE OF VARIABLES 500 9.4A AFFINE CHANGES OF VARIABLES 500 9.4B ANOTHER LOOK AT POLAR COORDINATES 507 9.4C THE GENERAL CHANGE OF VARIABLES FORMULA 511 9.4D CYLINDRICAL COORDINATES 512 9.4E SPHERICAL COORDINATES 514 9.5 SURFACE AREA 523 10 VECTOR INTEGRALS AND STOKES THEOREM 529 10.0 INTRODUCTION 529 10.1 LINE INTEGRALS 530 10.1A SMOOTH ORIENTED CURVES . 530 10.1B DEFINITION OF THE LINE INTEGRAL 532 10.1C PROPERTIES OF LINE INTEGRALS 535 LO.LD WORK 539 10.2 STOKES THEOREM IN THE PLANE 543 10.2A STOKE S THEOREM FOR A RECTANGULAR REGION 543 10.2B MORE GENERAL REGIONS 544 10.2C OTHER VERSIONS 547 10.2D APPLICATIONS 550 10.3 SURFACE INTEGRALS 554 10.3A SMOOTH ORIENTED SURFACES IN R 3 554 10.3B DEFINITION OF A SURFACE INTEGRAL 559 10.3C STOKES THEOREM IN R 3 561 10.3D GRAVITATIONAL FORCE 563 10.4 INDEPENDENCE OF PATH; POTENTIAL FUNCTIONS 570 10.4A THE ISSUE 570 10.4B THE MAIN THEOREMS 570 10.4C EXAMPLES 575 CONTENTS XVII ANSWERS AND PARTIAL ANSWERS TO SELECTED EXERCISES 581 INDEX 611 *
any_adam_object 1
author Flanigan, Francis J.
Kazdan, Jerry 1937-
author_GND (DE-588)1077474733
author_facet Flanigan, Francis J.
Kazdan, Jerry 1937-
author_role aut
aut
author_sort Flanigan, Francis J.
author_variant f j f fj fjf
j k jk
building Verbundindex
bvnumber BV004259131
classification_rvk SK 110
SK 220
SK 400
classification_tum MAT 263f
MAT 260f
ctrlnum (OCoLC)246752333
(DE-599)BVBBV004259131
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01876nam a2200481 c 4500</leader><controlfield tag="001">BV004259131</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240206 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">910128s1990 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540973885</subfield><subfield code="9">3-540-97388-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387973885</subfield><subfield code="9">0-387-97388-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246752333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004259131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 263f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 260f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flanigan, Francis J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus two</subfield><subfield code="b">linear and nonlinear functions</subfield><subfield code="c">Francis J. Flanigan ; Jerry L. Kazdan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed. </subfield><subfield code="b">rev. by David L. Frank ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 619 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazdan, Jerry</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077474733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002649359&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002649359</subfield></datafield></record></collection>
id DE-604.BV004259131
illustrated Illustrated
indexdate 2024-12-23T11:10:47Z
institution BVB
isbn 3540973885
0387973885
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002649359
oclc_num 246752333
open_access_boolean
owner DE-91
DE-BY-TUM
DE-384
DE-739
DE-83
DE-188
owner_facet DE-91
DE-BY-TUM
DE-384
DE-739
DE-83
DE-188
physical XVII, 619 S. graph. Darst.
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
publisher Springer
record_format marc
series2 Undergraduate texts in mathematics
spellingShingle Flanigan, Francis J.
Kazdan, Jerry 1937-
Calculus two linear and nonlinear functions
Lineare Algebra (DE-588)4035811-2 gnd
Mehrere Variable (DE-588)4277015-4 gnd
Infinitesimalrechnung (DE-588)4072798-1 gnd
subject_GND (DE-588)4035811-2
(DE-588)4277015-4
(DE-588)4072798-1
title Calculus two linear and nonlinear functions
title_auth Calculus two linear and nonlinear functions
title_exact_search Calculus two linear and nonlinear functions
title_full Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan
title_fullStr Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan
title_full_unstemmed Calculus two linear and nonlinear functions Francis J. Flanigan ; Jerry L. Kazdan
title_short Calculus two
title_sort calculus two linear and nonlinear functions
title_sub linear and nonlinear functions
topic Lineare Algebra (DE-588)4035811-2 gnd
Mehrere Variable (DE-588)4277015-4 gnd
Infinitesimalrechnung (DE-588)4072798-1 gnd
topic_facet Lineare Algebra
Mehrere Variable
Infinitesimalrechnung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002649359&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT flaniganfrancisj calculustwolinearandnonlinearfunctions
AT kazdanjerry calculustwolinearandnonlinearfunctions