Introduction to stochastic integration

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chung, Kai Lai 1917-2009 (VerfasserIn), Williams, Ruth J. 1955- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston ; Basel ; Berlin Birkhäuser 1990
Ausgabe:second edition
Schriftenreihe:Probability and its applications
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV004197089
003 DE-604
005 20231107
007 t|
008 910110s1990 xx |||| |||| 00||| eng d
020 |a 0817633863  |9 0-8176-3386-3 
020 |a 3764333863  |9 3-7643-3386-3 
035 |a (OCoLC)21949793 
035 |a (DE-599)BVBBV004197089 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-19  |a DE-91G  |a DE-739  |a DE-355  |a DE-824  |a DE-29T  |a DE-384  |a DE-83  |a DE-11  |a DE-188  |a DE-521 
050 0 |a QA274.22 
082 0 |a 519.2  |2 20 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 60H05  |2 msc/1990 
084 |a MAT 606f  |2 stub 
084 |a MAT 285f  |2 stub 
100 1 |a Chung, Kai Lai  |d 1917-2009  |0 (DE-588)136125484  |4 aut 
245 1 0 |a Introduction to stochastic integration  |c K. L. Chung ; R. J. Williams 
250 |a second edition 
264 1 |a Boston ; Basel ; Berlin  |b Birkhäuser  |c 1990 
300 |a xv, 276 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Probability and its applications 
650 4 |a Intégrales stochastiques 
650 7 |a Intégrales stochastiques  |2 ram 
650 4 |a Martingales (Mathématiques) 
650 7 |a Martingales (Mathématiques)  |2 ram 
650 7 |a Stochastische integratie  |2 gtt 
650 4 |a Martingales (Mathematics) 
650 4 |a Stochastic integrals 
650 0 7 |a Stochastisches Integral  |0 (DE-588)4126478-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Martingal  |0 (DE-588)4126466-6  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Stochastisches Integral  |0 (DE-588)4126478-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Martingal  |0 (DE-588)4126466-6  |D s 
689 1 |5 DE-604 
700 1 |a Williams, Ruth J.  |d 1955-  |0 (DE-588)172452910  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4612-4480-6 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002614534&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-002614534 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 605f 2001 A 10617
0102 MAT 605f 2001 A 10618
0202 MAT 605f 2002 A 1243(2)
DE-BY-TUM_katkey 511082
DE-BY-TUM_location 01
02
DE-BY-TUM_media_number 040020170094
040020054526
040020670680
_version_ 1820882671142699008
adam_text TABLE OF CONTENTS PREFACE v PREFACE TO THE FIRST EDITION vii ABBREVIATIONS AND SYMBOLS xiii 1. PRELIMINARIES 1 1.1 Notations and Conventions 1 1.2 Measurability, Lp Spaces and Monotone Class Theorems 2 1.3 Functions of Bounded Variation and Stieltjes Integrals 4 1.4 Probability Space, Random Variables, Filtration 6 1.5 Convergence, Conditioning 7 1.6 Stochastic Processes 8 1.7 Optional Times 9 1.8 Two Canonical Processes 10 1.9 Martingales 13 1.10 Local Martingales 18 1.11 Exercises 21 x TABLE OF CONTENTS 2. DEFINITION OF THE STOCHASTIC INTEGRAL 23 2.1 Introduction 23 2.2 Predictable Sets and Processes 25 2.3 Stochastic Intervals 26 2.4 Measure on the Predictable Sets 32 2.5 Definition of the Stochastic Integral 34 2.6 Extension to Local Integrators and Integrands 43 2.7 Substitution Formula 48 2.8 A Sufficient Condition for Extendability of z 50 2.9 Exercises 54 3. EXTENSION OF THE PREDICTABLE INTEGRANDS 57 3.1 Introduction 57 3.2 Relationship between V, O, and Adapted Processes 57 3.3 Extension of the Integrands 63 3.4 A Historical Note 71 3.5 Exercises 73 4. QUADRATIC VARIATION PROCESS 75 4.1 Introduction 75 4.2 Definition and Characterization of Quadratic Variation 75 4.3 Properties of Quadratic Variation for an £2 martingale 79 4.4 Direct Definition of hm 82 4.5 Decomposition of (M)2 86 4.6 A Limit Theorem 89 4.7 Exercises 90 5. THE ITO FORMULA 93 5.1 Introduction 93 5.2 One dimensional Ito Formula 94 5.3 Mutual Variation Process 99 5.4 Multi dimensional Ito Formula 109 5.5 Exercises 112 TABLE OF CONTENTS xi 6. APPLICATIONS OF THE ITO FORMULA 117 6.1 Characterization of Brownian Motion 117 6.2 Exponential Processes 120 6.3 A Family of Martingales Generated by M 123 6.4 Feynman Kac Functional and the Schrodinger Equation 128 6.5 Exercises 136 7. LOCAL TIME AND TANAKA S FORMULA 141 7.1 Introduction 141 7.2 Local Time 142 7.3 Tanaka s Formula 150 7.4 Proof of Lemma 7.2 153 7.5 Exercises 155 8. REFLECTED BROWNIAN MOTIONS 157 8.1 Introduction 157 8.2 Brownian Motion Reflected at Zero 158 8.3 Analytical Theory of Z via the Ito Formula 161 8.4 Approximations in Storage Theory 163 8.5 Reflected Brownian Motions in a Wedge 174 8.6 Alternative Derivation of Equation (8.7) 178 8.7 Exercises 181 9. GENERALIZED ITO FORMULA, CHANGE OF TIME AND MEASURE 183 9.1 Introduction 183 9.2 Generalized Ito Formula 184 9.3 Change of Time 187 9.4 Change of Measure 197 9.5 Exercises 214 xii TABLE OF CONTENTS 10. STOCHASTIC DIFFERENTIAL EQUATIONS 217 10.1 Introduction 217 10.2 Existence and Uniqueness for Lipschitz Coefficients 220 10.3 Strong Markov Property of the Solution 235 10.4 Strong and Weak Solutions 243 10.5 Examples 252 10.6 Exercises 262 REFERENCES 265 INDEX 273
any_adam_object 1
author Chung, Kai Lai 1917-2009
Williams, Ruth J. 1955-
author_GND (DE-588)136125484
(DE-588)172452910
author_facet Chung, Kai Lai 1917-2009
Williams, Ruth J. 1955-
author_role aut
aut
author_sort Chung, Kai Lai 1917-2009
author_variant k l c kl klc
r j w rj rjw
building Verbundindex
bvnumber BV004197089
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274.22
callnumber-search QA274.22
callnumber-sort QA 3274.22
callnumber-subject QA - Mathematics
classification_rvk SK 820
classification_tum MAT 606f
MAT 285f
ctrlnum (OCoLC)21949793
(DE-599)BVBBV004197089
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
edition second edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02270nam a2200577 c 4500</leader><controlfield tag="001">BV004197089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231107 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">910110s1990 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817633863</subfield><subfield code="9">0-8176-3386-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764333863</subfield><subfield code="9">3-7643-3386-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21949793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004197089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60H05</subfield><subfield code="2">msc/1990</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 285f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chung, Kai Lai</subfield><subfield code="d">1917-2009</subfield><subfield code="0">(DE-588)136125484</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to stochastic integration</subfield><subfield code="c">K. L. Chung ; R. J. Williams</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 276 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intégrales stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intégrales stochastiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Martingales (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische integratie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic integrals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Ruth J.</subfield><subfield code="d">1955-</subfield><subfield code="0">(DE-588)172452910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4612-4480-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002614534&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002614534</subfield></datafield></record></collection>
genre 1\p (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV004197089
illustrated Not Illustrated
indexdate 2024-12-23T11:09:57Z
institution BVB
isbn 0817633863
3764333863
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002614534
oclc_num 21949793
open_access_boolean
owner DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-384
DE-83
DE-11
DE-188
DE-521
owner_facet DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-824
DE-29T
DE-384
DE-83
DE-11
DE-188
DE-521
physical xv, 276 Seiten Diagramme
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
publisher Birkhäuser
record_format marc
series2 Probability and its applications
spellingShingle Chung, Kai Lai 1917-2009
Williams, Ruth J. 1955-
Introduction to stochastic integration
Intégrales stochastiques
Intégrales stochastiques ram
Martingales (Mathématiques)
Martingales (Mathématiques) ram
Stochastische integratie gtt
Martingales (Mathematics)
Stochastic integrals
Stochastisches Integral (DE-588)4126478-2 gnd
Martingal (DE-588)4126466-6 gnd
subject_GND (DE-588)4126478-2
(DE-588)4126466-6
(DE-588)4151278-9
title Introduction to stochastic integration
title_auth Introduction to stochastic integration
title_exact_search Introduction to stochastic integration
title_full Introduction to stochastic integration K. L. Chung ; R. J. Williams
title_fullStr Introduction to stochastic integration K. L. Chung ; R. J. Williams
title_full_unstemmed Introduction to stochastic integration K. L. Chung ; R. J. Williams
title_short Introduction to stochastic integration
title_sort introduction to stochastic integration
topic Intégrales stochastiques
Intégrales stochastiques ram
Martingales (Mathématiques)
Martingales (Mathématiques) ram
Stochastische integratie gtt
Martingales (Mathematics)
Stochastic integrals
Stochastisches Integral (DE-588)4126478-2 gnd
Martingal (DE-588)4126466-6 gnd
topic_facet Intégrales stochastiques
Martingales (Mathématiques)
Stochastische integratie
Martingales (Mathematics)
Stochastic integrals
Stochastisches Integral
Martingal
Einführung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002614534&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT chungkailai introductiontostochasticintegration
AT williamsruthj introductiontostochasticintegration