Formal number theory and computability A workbook

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fisher, Alec (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford Clarendon Press 1982
Schriftenreihe:Oxford logic guides. 7.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV003665279
003 DE-604
005 00000000000000.0
007 t
008 900725s1982 d||| |||| 00||| eng d
020 |a 0198531788  |9 0-19-853178-8 
020 |a 0198531885  |9 0-19-853188-5 
035 |a (OCoLC)8475061 
035 |a (DE-599)BVBBV003665279 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-384  |a DE-739  |a DE-19  |a DE-706  |a DE-83  |a DE-188 
050 0 |a QA241 
082 0 |a 512/.72  |2 19 
082 0 |a 511.3/076  |2 19 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a 03B30  |2 msc 
084 |a 10N05  |2 msc 
100 1 |a Fisher, Alec  |e Verfasser  |4 aut 
245 1 0 |a Formal number theory and computability  |b A workbook 
264 1 |a Oxford  |b Clarendon Press  |c 1982 
300 |a XIII, 190 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Oxford logic guides.  |v 7. 
490 0 |a Oxford science publications. 
650 4 |a Axiomatique 
650 4 |a Calculabilité 
650 4 |a Exercice logique 
650 4 |a Gödel, Théorème de 
650 7 |a Gödel, Théorème de  |2 ram 
650 7 |a Incomplétude, Théorèmes d'  |2 ram 
650 4 |a Indécidabilité 
650 4 |a Nombres, Théorie des 
650 7 |a Nombres, Théorie des  |2 ram 
650 4 |a Théorie nombre 
650 4 |a Théorèmes d'incomplétude 
650 7 |a Wiskundige logica  |2 gtt 
650 4 |a Gödel's theorem 
650 4 |a Incompleteness theorems 
650 4 |a Number theory 
650 0 7 |a Berechenbarkeit  |0 (DE-588)4138368-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Zahlentheorie  |0 (DE-588)4067277-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Zahlentheorie  |0 (DE-588)4067277-3  |D s 
689 1 1 |a Berechenbarkeit  |0 (DE-588)4138368-0  |D s 
689 1 |5 DE-604 
830 0 |a Oxford logic guides.  |v 7.  |w (DE-604)BV000013997  |9 7. 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002333856&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-002333856 

Datensatz im Suchindex

_version_ 1804118012396044288
adam_text CONTENTS Introduction xi Part I The formalization of number theory 1 1. Proving some basic results 3 Divisibility and primes The Fundamental Theorem of Arithmetic The Euclidean Algorithm The infinitude of the primes The Chinese Remainder Theorem Godel s ^ function The question of elementary methods 2. Eliciting assumptions 13 Eliciting assumptions: a first example A direct proof Reductio ad absurdum Mathematical induction Excluded middle and proof by cases — Summary of principles 3. Testing the soundness of logical assumptions 24 Is there a test for soundness? Constructing truth tables The truth tables A short truth table method Some useful equivalences Predicate logic 4. Problems in the foundations of mathematics 31 Intuitions and axioms — Infinite sets and the diagonal method: Cantor s set theory Explicit logical axioms for mathematics: Frege s logicism — Russell s paradox discovered — Finitism and formalism: Hilbert s programme — Decidable predicates and formal theories The notion of formal proof and first order theory Gddel numbering — Arithmetization and metamathematics 5. The formal theory N introduced 42 The symbols of the theory — Formation rules — Scope of an operator Free and bound variables — Substitution The axioms and rules for N Proof finding made easier Deduction from assumptions The Deduction Theorem — Introduction and elimination rules 6. Some theorems of N 58 Properties of = — The Replacement Theorem — Properties of+, •, , and 0 — Order properties in N Existence and uniqueness of quotient x CONTENTS and remainder — The least number principle — Euclid s Theorem — Equivalents of mathematical induction — Questions about completeness 7. A complete theory for addition 72 Disjunctive normal form — Prenex normal form — The formal theory D The Reduction Algorithm Completeness and decidability of D — Properties of congruences — Exercises for Chapter 7 Part II Computability, incompleteness, and undecidability 85 8. Introducing register machines 87 Intuitions about computability The unlimited register ideal machine described — Drawing flow diagrams — Building from subprograms — Multiplying the contents of R/ and Ry — The algorithm for writing programs from flow diagrams — R computability defined — Church s Thesis 9. Programming computations 99 Examples of R computable functions — Computability of formal notions v is the godel number of a term A summary outline — Checking the flow diagram v is the godel number of a formula — Extrapolation 10. Numeralwise representation 112 Numeralwise expressibility and representability — The numeralwise representability of R computable functions 11. Incompleteness of the formal theory 119 The incompleteness of N — the unprovability of consistency — Developments using the diagonal function — R decidability Tarski s Theorem 12. Undecidable problems 127 The formal theory Q* — The representability of R computable functions in Q+ — Church s Theorem The halting problem — Godel numbering programs The universal R machine The unsolvability of the halting problem Appendix: answers to exercises 136 Bibliography 187 Index 189
any_adam_object 1
author Fisher, Alec
author_facet Fisher, Alec
author_role aut
author_sort Fisher, Alec
author_variant a f af
building Verbundindex
bvnumber BV003665279
callnumber-first Q - Science
callnumber-label QA241
callnumber-raw QA241
callnumber-search QA241
callnumber-sort QA 3241
callnumber-subject QA - Mathematics
classification_rvk SK 180
ctrlnum (OCoLC)8475061
(DE-599)BVBBV003665279
dewey-full 512/.72
511.3/076
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
511 - General principles of mathematics
dewey-raw 512/.72
511.3/076
dewey-search 512/.72
511.3/076
dewey-sort 3512 272
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02324nam a2200661 cb4500</leader><controlfield tag="001">BV003665279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1982 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198531788</subfield><subfield code="9">0-19-853178-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198531885</subfield><subfield code="9">0-19-853188-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)8475061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003665279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/076</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03B30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">10N05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fisher, Alec</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formal number theory and computability</subfield><subfield code="b">A workbook</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 190 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford logic guides.</subfield><subfield code="v">7.</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford science publications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculabilité</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exercice logique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gödel, Théorème de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gödel, Théorème de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Incomplétude, Théorèmes d'</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indécidabilité</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie nombre</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorèmes d'incomplétude</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gödel's theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompleteness theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechenbarkeit</subfield><subfield code="0">(DE-588)4138368-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Berechenbarkeit</subfield><subfield code="0">(DE-588)4138368-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford logic guides.</subfield><subfield code="v">7.</subfield><subfield code="w">(DE-604)BV000013997</subfield><subfield code="9">7.</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002333856&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002333856</subfield></datafield></record></collection>
id DE-604.BV003665279
illustrated Illustrated
indexdate 2024-07-09T16:03:32Z
institution BVB
isbn 0198531788
0198531885
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002333856
oclc_num 8475061
open_access_boolean
owner DE-384
DE-739
DE-19
DE-BY-UBM
DE-706
DE-83
DE-188
owner_facet DE-384
DE-739
DE-19
DE-BY-UBM
DE-706
DE-83
DE-188
physical XIII, 190 S. graph. Darst.
publishDate 1982
publishDateSearch 1982
publishDateSort 1982
publisher Clarendon Press
record_format marc
series Oxford logic guides.
series2 Oxford logic guides.
Oxford science publications.
spelling Fisher, Alec Verfasser aut
Formal number theory and computability A workbook
Oxford Clarendon Press 1982
XIII, 190 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Oxford logic guides. 7.
Oxford science publications.
Axiomatique
Calculabilité
Exercice logique
Gödel, Théorème de
Gödel, Théorème de ram
Incomplétude, Théorèmes d' ram
Indécidabilité
Nombres, Théorie des
Nombres, Théorie des ram
Théorie nombre
Théorèmes d'incomplétude
Wiskundige logica gtt
Gödel's theorem
Incompleteness theorems
Number theory
Berechenbarkeit (DE-588)4138368-0 gnd rswk-swf
Mathematische Logik (DE-588)4037951-6 gnd rswk-swf
Zahlentheorie (DE-588)4067277-3 gnd rswk-swf
Mathematische Logik (DE-588)4037951-6 s
DE-604
Zahlentheorie (DE-588)4067277-3 s
Berechenbarkeit (DE-588)4138368-0 s
Oxford logic guides. 7. (DE-604)BV000013997 7.
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002333856&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Fisher, Alec
Formal number theory and computability A workbook
Oxford logic guides.
Axiomatique
Calculabilité
Exercice logique
Gödel, Théorème de
Gödel, Théorème de ram
Incomplétude, Théorèmes d' ram
Indécidabilité
Nombres, Théorie des
Nombres, Théorie des ram
Théorie nombre
Théorèmes d'incomplétude
Wiskundige logica gtt
Gödel's theorem
Incompleteness theorems
Number theory
Berechenbarkeit (DE-588)4138368-0 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Zahlentheorie (DE-588)4067277-3 gnd
subject_GND (DE-588)4138368-0
(DE-588)4037951-6
(DE-588)4067277-3
title Formal number theory and computability A workbook
title_auth Formal number theory and computability A workbook
title_exact_search Formal number theory and computability A workbook
title_full Formal number theory and computability A workbook
title_fullStr Formal number theory and computability A workbook
title_full_unstemmed Formal number theory and computability A workbook
title_short Formal number theory and computability
title_sort formal number theory and computability a workbook
title_sub A workbook
topic Axiomatique
Calculabilité
Exercice logique
Gödel, Théorème de
Gödel, Théorème de ram
Incomplétude, Théorèmes d' ram
Indécidabilité
Nombres, Théorie des
Nombres, Théorie des ram
Théorie nombre
Théorèmes d'incomplétude
Wiskundige logica gtt
Gödel's theorem
Incompleteness theorems
Number theory
Berechenbarkeit (DE-588)4138368-0 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Zahlentheorie (DE-588)4067277-3 gnd
topic_facet Axiomatique
Calculabilité
Exercice logique
Gödel, Théorème de
Incomplétude, Théorèmes d'
Indécidabilité
Nombres, Théorie des
Théorie nombre
Théorèmes d'incomplétude
Wiskundige logica
Gödel's theorem
Incompleteness theorems
Number theory
Berechenbarkeit
Mathematische Logik
Zahlentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002333856&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000013997
work_keys_str_mv AT fisheralec formalnumbertheoryandcomputabilityaworkbook