Numerical solution of partial differential equations finite difference methods

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Smith, Gordon D. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford Clarendon Press 1985
Ausgabe:Third edition
Schriftenreihe:Oxford applied mathematics and computing science series
Schlagworte:
Online-Zugang:Publisher description
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV003479063
003 DE-604
005 20240215
007 t
008 900725s1985 |||| |||| 00||| eng d
010 |a 85019867 
020 |a 0198596413  |9 0-19-859641-3 
020 |a 0198596502  |9 0-19-859650-2 
035 |a (OCoLC)12612686 
035 |a (DE-599)BVBBV003479063 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-739  |a DE-355  |a DE-29T  |a DE-91  |a DE-91G  |a DE-634  |a DE-83  |a DE-188  |a DE-706  |a DE-521 
050 0 |a QA374 
082 0 |a 515.3/53  |2 19 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a 65F10  |2 msc 
084 |a 65N05  |2 msc 
084 |a 65N20  |2 msc 
084 |a 65M06  |2 msc 
084 |a 65Nxx  |2 msc 
084 |a MAT 673f  |2 stub 
100 1 |a Smith, Gordon D.  |0 (DE-588)1158286333  |4 aut 
245 1 0 |a Numerical solution of partial differential equations  |b finite difference methods  |c G. D. Smith, Brunel University 
250 |a Third edition 
264 1 |a Oxford  |b Clarendon Press  |c 1985 
300 |a xi, 337 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Oxford applied mathematics and computing science series 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 7 |a Equations aux dérivées partielles  |2 ram 
650 4 |a Difference equations  |x Numerical solutions 
650 4 |a Differential equations, Partial  |x Numerical solutions 
650 0 7 |a Finite-Differenzen-Methode  |0 (DE-588)4194626-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzenverfahren  |0 (DE-588)4134362-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerische Mathematik  |0 (DE-588)4042805-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzengleichung  |0 (DE-588)4012264-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialgleichung  |0 (DE-588)4012249-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 2 |a Differenzenverfahren  |0 (DE-588)4134362-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 1 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 1 2 |a Finite-Differenzen-Methode  |0 (DE-588)4194626-1  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Numerische Mathematik  |0 (DE-588)4042805-9  |D s 
689 2 |8 2\p  |5 DE-604 
689 3 0 |a Differenzengleichung  |0 (DE-588)4012264-5  |D s 
689 3 |8 3\p  |5 DE-604 
689 4 0 |a Differentialgleichung  |0 (DE-588)4012249-9  |D s 
689 4 |8 4\p  |5 DE-604 
856 4 2 |q text/html  |u http://www.loc.gov/catdir/enhancements/fy0603/85019867-d.html  |3 Publisher description 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203995&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-002203995 
259 |a 3 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_call_number 0001/86 A 347
0202/MAT 671f 2002 A 1004(3)
0736/MA.31
DE-BY-TUM_katkey 492569
DE-BY-TUM_media_number 040020655330
TEMP2942167
040000135715
_version_ 1816711542712827904
adam_text Contents NOTATION xiii 1. INTRODUCTION AND FINITE DIFFERENCE FORMULAE Descriptive treatment of elliptic equations 1 Descriptive treatment of parabolic and hyperbolic equations 4 Finite difference approximations to derivatives 6 Notation for functions of several variables 8 2. PARABOLIC EQUATIONS: FINITE DIFFERENCE METHODS, CONVERGENCE, AND STABILITY Transformation to non dimensional form 11 An explicit finite difference approximation to dU/dt = d2U/dxz 12 A worked example covering three cases and including com¬ parison tables 13 Crank Nicolson implicit method 19 Worked example including a comparison table 21 Solution of the implicit equations by Gauss s elimination method 24 The stability of the elimination method 27 A weighted average approximation 28 Derivative boundary conditions 29 Worked examples including comparison tables: (i) Explicit formula and central differenced boundary con¬ dition 31 (ii) Explicit formula and forward differenced boundary condition 33 (iii) Implicit formula and central differenced boundary con¬ dition 36 The local truncation error and a worked example 38 Consistency and a worked example illustrating both consis¬ tency and inconsistency 40 Convergence, descriptive treatment and the analysis of an explicit approximation 43 Stability, descriptive treatment 47 viii Contents Vector and matrix norms, subordinate matrix norms, p(A)=£ I|A|| 49 A necessary and sufficient condition for stability, ||A||=£l, and two worked examples 51 Matrix method of analysis, fixed mesh size. 57 A note on the eigenvalues of /(A) and t/i(A)]~1/2(A) 58 The eigenvalues of a common tridiagonal matrix 59 Theorems on bounds for eigenvalues and an application. (Gerschgorin s theorems) 60 Gerschgorin s circle theorem and the norm of matrix A 62 Stability criteria for derivative boundary conditions using (i) the circle theorem (ii) ||A|U«1 63 Stability condition allowing exponential growth 66 Stability, von Neumann s method, and three worked examples 67 The global rounding error 71 Lax s equivalence theorem (statement only) and a detailed analysis of a simple case 72 Finite difference approximations to dU/dt = V2U in cylindrical and spherical polar co ordinates 75 A worked example involving lim(dU/dx)Ix 77 Exercises and solutions * 79 3. PARABOLIC EQUATIONS: ALTERNATIVE DERIVATION OF DIFFERENCE EQUATIONS AND MISCELLANEOUS TOPICS Reduction to a system of ordinary differential equations 111 A note on the solution of dV/df = AV+b 113 Finite difference approximations via the ordinary differential equations 115 The Pade approximants to exp 0 116 Standard finite difference equations via the Pade approximants 117 Ao stability, L0 stability and the symbol of the method 119 A necessary constraint on the time step for Crank Nicolson method 122 The local truncation errors associated with the Pade approxim¬ ants 124 Stiff equations 126 An extrapolation method for improving accuracy in t 126 The symbol for the extrapolation method 128 The arithmetic of the extrapolation method 129 i The local truncation errors and symbols of extrapolation schemes 132 Contents ix The eigenvalue eigenvector solution of a system of ordinary differential equations (i) Preliminary results 132 (ii) The eigenvalue eigenvector solution of dV/df = AV 134 (iii) An application giving an approximate solution for large t 135 Miscellaneous methods for improving accuracy: (i) Reduction of the local truncation error the Douglas equations 137 (ii) Use of three time level difference equations 138 (iii) Deferred correction method 139 (iv) Richardson s deferred approach to the limit 141 Solution of non linear parabolic equations: (i) Newton s linearization method and a worked example 142 (ii) Richtmyer s linearization method 144 (iii) Lee s three time level method 146 A comparison of results for methods (i), (ii), and (iii) for a particular problem 147 The stability of three or more time level difference equations: (i) A useful theorem on eigenvalues 148 (ii) Matrices with common eigenvector systems 150 (iii) A worked example 150 Introduction to the analytical solution of homogeneous differ¬ ence equations: 153 (i) The eigenvalues and vectors of a common tridiagonal matrix 154 (ii) The analytical solution of the classical explicit approxi¬ mation to dU/dt = d2Uldx2 156 Exercises and solutions 158 4. HYPERBOLIC EQUATIONS AND CHARACTERISTICS Analytical solution of first order quasi linear equations 175 A worked example and discussion 176 Numerical integration along a characteristic 178 A worked example 179 Finite difference methods on a rectangular mesh for first order equations: (i) Lax Wendroff explicit method and a worked example with a comparison table 181 (ii) Lax Wendroff method for a set of simultaneous equa¬ tions 183 (iii) The Courant Friedrichs Lewy condition 186 x Contents (iv) Wendrofl s implicit approximation 187 Propagation of discontinuities, first order equations: (i) discontinuous initial values 188 (ii) Discontinuous initial derivatives 189 Discontinuities and finite difierence approximations. An ex¬ ample using Wendroff s implicit approximation 190 Reduction of a first order equation to a system of ordinary differential equations 193 The (1,0) Pade difference approximation 195 A comment on the non stiffness of the equations 196 The (1,1) Pade or Crank Nicolson difference equations 196 An improved approximation to dU/dx and the (1,0) Pade difference equations 197 A word of caution on the central difference approximation to dU/dx 200 Second order quasi linear hyperbolic equations. Characteristic curves, and the differential relationship along them 202 Numerical solution by the method of characteristics 204 A worked example 207 A characteristic as an initial curve 209 Propagation of discontinuities, second order equations 210 Finite difference methods on a rectangular mesh for second order equations: 213 (i) Explicit methods and the Courant Friedrichs Lewy condition 213 (ii) Implicit methods with particular reference to the wave equation 216 Simultaneous first order equations and stability 217 Exercises and solutions 220 5. ELLIPTIC EQUATIONS AND SYSTEMATIC ITERATIVE METHODS Introduction 239 Worked examples: (i) A torsion problem, (ii) A heat conduction problem with derivative boundary conditions 240 Finite differences in polar co ordinates 245 . Improvement of the accuracy of solutions: (i) Finer mesh, (ii) Deferred approach to the limit, (iii) Deferred correction method, (iv) More accurate finite difference formulae in ¦, eluding the nine point formula 248 Analysis of the discretization error of the five point approxi¬ mation to Poisson s equation over a rectangle. Quoted 252 result for irregular boundaries 254 i Contents xi Comments on the solution of difference equations, covering Gauss elimination, LU decomposition, rounding errors, ill conditioning, iterative refinement, iterative methods 257 Systematic iterative methods for large linear systems 260 Jacobi, Gauss Seidel, and SOR methods 261 A worked example covering each method 263 Jacobi, Gauss Seidel, and SOR methods in matrix form 266 A necessary and sufficient condition for convergence of itera¬ tive methods 268 A sufficient condition for convergence 269 Asymptotic and average rates of convergence 270 Methods for accelerating convergence, (i) Lyusternik s method, (ii) Aitken s method. An illustrative example 272 Eigenvalues of the Jacobi and SOR iteration matrices and two worked examples 275 The optimum acceleration parameter for the SOR method. A necessary theorem 277 Proof of (X+o) l)2 = A.o 2fi2 for block tridiagonal coefficient matrices 279 Non zero eigenvalues of the Jacobi iteration matrix 280 Theoretical determination of the optimum relaxation parame¬ ter (ob 282 Calculation of a b for a rectangle and other solution domains 285 The Gauss Seidel iteration matrix H(l) 285 Re ordering of equations and unknowns 286 Point iterative methods and re orderings 287 Introduction to 2 cyclic matrices and consistent ordering 288 2 cyclic matrices 289 Ordering vectors for 2 cyclic matrices 290 Consistent ordering of a 2 cyclic matrix 292 The ordering vector for a block tridiagonal matrix 294 An example of a consistently ordered 2 cyclic matrix that is not block tridiagonal 297 Additional comments on consistent ordering and the SOR method 297 Consistent orderings associated with the five point approxima¬ tion to Poisson s equation 298 Stone s strongly implicit iterative method 302 A recent direct method 309 Exercises and solutions 311 INDEX 334
any_adam_object 1
author Smith, Gordon D.
author_GND (DE-588)1158286333
author_facet Smith, Gordon D.
author_role aut
author_sort Smith, Gordon D.
author_variant g d s gd gds
building Verbundindex
bvnumber BV003479063
callnumber-first Q - Science
callnumber-label QA374
callnumber-raw QA374
callnumber-search QA374
callnumber-sort QA 3374
callnumber-subject QA - Mathematics
classification_rvk SK 540
SK 920
classification_tum MAT 673f
ctrlnum (OCoLC)12612686
(DE-599)BVBBV003479063
dewey-full 515.3/53
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.3/53
dewey-search 515.3/53
dewey-sort 3515.3 253
dewey-tens 510 - Mathematics
discipline Mathematik
edition Third edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03524nam a2200805 c 4500</leader><controlfield tag="001">BV003479063</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1985 |||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">85019867</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198596413</subfield><subfield code="9">0-19-859641-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198596502</subfield><subfield code="9">0-19-859650-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)12612686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003479063</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA374</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3/53</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65F10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65N05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65N20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65M06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Nxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 673f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Gordon D.</subfield><subfield code="0">(DE-588)1158286333</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical solution of partial differential equations</subfield><subfield code="b">finite difference methods</subfield><subfield code="c">G. D. Smith, Brunel University</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 337 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford applied mathematics and computing science series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations aux dérivées partielles</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0603/85019867-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002203995&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002203995</subfield></datafield><datafield tag="259" ind1=" " ind2=" "><subfield code="a">3</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV003479063
illustrated Not Illustrated
indexdate 2024-11-25T17:10:36Z
institution BVB
isbn 0198596413
0198596502
language English
lccn 85019867
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002203995
oclc_num 12612686
open_access_boolean
owner DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-29T
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
DE-706
DE-521
owner_facet DE-384
DE-703
DE-739
DE-355
DE-BY-UBR
DE-29T
DE-91
DE-BY-TUM
DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
DE-706
DE-521
physical xi, 337 Seiten Diagramme
publishDate 1985
publishDateSearch 1985
publishDateSort 1985
publisher Clarendon Press
record_format marc
series2 Oxford applied mathematics and computing science series
spellingShingle Smith, Gordon D.
Numerical solution of partial differential equations finite difference methods
Equations aux dérivées partielles ram
Difference equations Numerical solutions
Differential equations, Partial Numerical solutions
Finite-Differenzen-Methode (DE-588)4194626-1 gnd
Differenzenverfahren (DE-588)4134362-1 gnd
Numerische Mathematik (DE-588)4042805-9 gnd
Differenzengleichung (DE-588)4012264-5 gnd
Differentialgleichung (DE-588)4012249-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
subject_GND (DE-588)4194626-1
(DE-588)4134362-1
(DE-588)4042805-9
(DE-588)4012264-5
(DE-588)4012249-9
(DE-588)4128130-5
(DE-588)4044779-0
title Numerical solution of partial differential equations finite difference methods
title_auth Numerical solution of partial differential equations finite difference methods
title_exact_search Numerical solution of partial differential equations finite difference methods
title_full Numerical solution of partial differential equations finite difference methods G. D. Smith, Brunel University
title_fullStr Numerical solution of partial differential equations finite difference methods G. D. Smith, Brunel University
title_full_unstemmed Numerical solution of partial differential equations finite difference methods G. D. Smith, Brunel University
title_short Numerical solution of partial differential equations
title_sort numerical solution of partial differential equations finite difference methods
title_sub finite difference methods
topic Equations aux dérivées partielles ram
Difference equations Numerical solutions
Differential equations, Partial Numerical solutions
Finite-Differenzen-Methode (DE-588)4194626-1 gnd
Differenzenverfahren (DE-588)4134362-1 gnd
Numerische Mathematik (DE-588)4042805-9 gnd
Differenzengleichung (DE-588)4012264-5 gnd
Differentialgleichung (DE-588)4012249-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
topic_facet Equations aux dérivées partielles
Difference equations Numerical solutions
Differential equations, Partial Numerical solutions
Finite-Differenzen-Methode
Differenzenverfahren
Numerische Mathematik
Differenzengleichung
Differentialgleichung
Numerisches Verfahren
Partielle Differentialgleichung
url http://www.loc.gov/catdir/enhancements/fy0603/85019867-d.html
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002203995&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT smithgordond numericalsolutionofpartialdifferentialequationsfinitedifferencemethods